I segreti della luce degli asteroidi – IYL2015 – Domenico Licchelli

Un mucchio di sassi rotanti disseminati nello spazio tra Marte e Giove, laddove sarebbe stato meglio che ci fosse un bel pianeta. Punti luminosi con la pessima abitudine di rovinare le fotografie a lunga posa con le loro tracce, senza peraltro fornire alcuna utile informazione, a parte l’evidente e fastidioso segno del loro percorso in cielo. Questo sono stati considerati per lungo tempo gli asteroidi, corpi celesti troppo poco interessanti per giustificare importanti programmi di ricerca loro dedicati.

Comparative imagery of nine asteroids. With a diameter of about 330 miles (530 kilometers), Vesta dwarfs all of these small bodies. Many scientists think it's a protoplanet left over from the solar system's first few million years. Credit: NASA/JPL-Caltech/JAXA/ESA

Comparative imagery of nine asteroids. With a diameter of about 330 miles (530 kilometers), Vesta dwarfs all of these small bodies. Many scientists think it’s a protoplanet left over from the solar system’s first few million years.
Credit: NASA/JPL-Caltech/JAXA/ESA

Negli ultimi decenni ci si è resi conto che si trattava, invece, di tasselli fondamentali per capire l’origine del nostro Sistema Solare e, in ultima istanza, di noi stessi. Perché una rivoluzione così radicale potesse avvenire, erano però necessarie idee molto forti, di quelle che in qualche modo segnano un prima e un dopo. Nel caso in questione si è trattato di due distinte prese di coscienza, legate rispettivamente alla vita e alla morte, una sorta di Eros e Thanatos su scala planetaria.

Da sempre l’uomo si chiede quale sia stata l’origine dell’Universo. Alcuni secoli di ricerche scientifiche non hanno ancora fornito risposte definitive, ammesso che ciò sia possibile. Tuttavia, hanno permesso di definire con sufficiente grado di precisione le caratteristiche principali del grande affresco cosmico. Restano però bisognose di ulteriori ed approfondite indagini alcune questioni cruciali, una delle quali ci interessa direttamente. Come si è formato il Sistema Solare ed in particolare il bel pianeta blu che ci ospita? Si potrebbe pensare che per venirne a capo, basti studiare in maniera accurata lo straordinario campionario di strutture geologiche disseminate sul globo terracqueo, la sua correlazione con le immani forze che ancora oggi agiscono all’interno del pianeta e l’interazione con gli elementi atmosferici e marini che ne hanno modellato il paesaggio per miliardi di anni. Tutto ciò è molto sensato, ed in effetti è quanto tentano di fare, con ottimi risultati, schiere di geologi, oceanografi e meteorologi. Ma la descrizione, per quanto dettagliata, deve inevitabilmente arrestarsi davanti ad una sorta di piccolo orizzonte degli eventi terrestre, costituito dal momento in cui l’intero pianeta era poco più di una massa fusa in continua trasformazione. All’interno dell’immensa sfera infuocata, sconvolgimenti di straordinaria potenza rimescolavano da cima a fondo tutta la materia, facendo così perdere quasi completamente le informazioni riguardanti il materiale primigenio da cui tutto aveva preso forma. Fine della storia e delle nostre ricerche? Fortunatamente no.

Un raffinato lampadario di vetro di Murano ci dice poco della sua origine, ma se guardandoci attorno troviamo pezzi di vetro semifuso, una fornace ancora accesa, un mucchietto di silice ed un pizzico di soda in un sacchetto, forse possiamo ancora ricostruire la sequenza delle trasformazioni che l’hanno portato ad essere quel che è. Su scala planetaria, il mucchietto di sabbia con i resti di fusione è rappresentato dagli asteroidi e dalle comete, corpi le cui caratteristiche chimiche e isotopiche sono state poco o punto modificate da processi di differenziazione e di evoluzione termica su larga scala e che conservano ancora oggi al loro interno preziosissime informazioni relative alla composizione della nebulosa primordiale. Avanzi, certo, di uno dei più straordinari processi di costruzione di nuovi mondi che si possa immaginare, ma al contempo, preziosi scrigni ricolmi di gioielli e, secondo alcuni, perfino diretti portatori della vita sulla Terra, un gesto degno di un magnifico Eros cosmico.

E Thanatos? In una notte calma e senza vento dirigiamo il nostro fidato telescopio verso il primo quarto di luna. Nell’oculare balza subito all’occhio il grande bacino circolare del Mare Serenitatis interamente ricoperto di lava, nonostante i quasi 700 km di diametro.

Luna_08_08_08In direzione opposta, verso il polo sud lunare, un’incredibile selva di crateri di tutte le dimensioni ricopre completamente la regione. Aumentando gli ingrandimenti, anche quelle zone che in precedenza sembravano lisce, si rivelano essere una moltitudine di piccoli crateri addossati gli uni agli altri. I più antichi sono stati quasi del tutto demoliti dai nuovi arrivati che hanno saturato completamente ogni spazio disponibile, distruggendo gli originali terrazzamenti e riempiendo a forza le platee, quasi vigesse una sorta di horror vacui che richiama alla mente certe architetture barocche leccesi o siciliane.

ticho-et-al

Terminatore lunare nei pressi del cratere Ticho – 2004

Oggi sappiamo che questi crateri sono stati generati da impatti di un gran numero di asteroidi e di meteoriti con la superficie del nostro satellite, soprattutto nelle prime fasi dell’evoluzione del Sistema Solare. Anzi, la Luna stessa si è con molta probabilità formata dalla collisione con la giovane Terra di un planetoide delle dimensioni di Marte. Anche il nostro pianeta ha sicuramente sperimentato questa fase di bombardamento cosmico dalle conseguenze più o meno catastrofiche che, seppur diradandosi progressivamente col passare del tempo, non è mai cessato del tutto.

Almeno in un caso, circa 65 milioni di anni fa, si ha ormai la quasi certezza che la caduta di un asteroide di qualche chilometro di diametro abbia portato ad una delle più grandi estinzioni di massa nella storia evolutiva della biosfera, la ben nota scomparsa dei dinosauri. Per la verità, secondo autorevoli studiosi, i mammiferi, compresi noialtri, devono la loro esistenza proprio all’immane catastrofe che seguì l’impatto e che spazzò via, in un colpo solo, i giganteschi rettili che avevano regnato incontrastati fino a quel momento. Tuttavia, lo stesso meccanismo che ha forse permesso la nostra esistenza potrebbe un giorno, si spera mai, portare alla nostra estinzione.

Ed ecco la seconda idea fondamentale. Gli asteroidi possono essere una grave minaccia per la sopravvivenza della nostra specie. In particolare, è diventato evidente che è di vitale importanza individuare tutti quei corpi che, per le loro caratteristiche dinamiche, possono entrare in rotta di collisione con la Terra, i cosiddetti PHAs (Potential Hazardous Asteroids, al 27 Gennaio 2015 sono 1541 quelli noti) e studiarne le caratteristiche, soprattutto la struttura interna e la loro composizione chimica e mineralogica, al fine di poter approntare le eventuali contromisure con cognizione di causa. Un impatto di un asteroide metallico avrebbe, infatti, conseguenze ben più catastrofiche di quello di un analogo roccioso, costituito da un aggregato incoerente di frammenti tenuti assieme dalla gravità.

I PHAs sono una piccolissima frazione della più numerosa famiglia dei NEO (Near Earth Object), costituita da una popolazione piuttosto eterogenea di corpi minori comprendente asteroidi, comete attive ed estinte e corpi progenitori di alcune classi di meteoriti. Provengono da tutte le regioni del Sistema Solare e sono caratterizzati dall’avere orbite caotiche e instabili che, nel volgere di pochi milioni di anni, concludono la loro esistenza cadendo sul Sole o impattando uno dei pianeti interni, se non sono finiti nel frattempo su orbite che li portano ad essere espulsi dal Sistema Solare.

PIA17041 - Kopia

An image mapping the orbits of all the potentially hazardous asteroids (PHAs) known. Image Credit: NASA/JPL-Caltech

La loro breve esistenza, su tempi scala cosmici, implica che la popolazione di NEO che osserviamo ai giorni nostri, non può certamente essere la stessa di quella che avremmo trovato anche solo qualche centinaio di milioni di anni fa. Deve perciò esistere un qualche meccanismo che rifornisce continuamente la popolazione dei NEO, compensandone le perdite e mantenendo relativamente alta nel tempo la probabilità che uno di essi finisca col prenderci di mira. Sono state individuate varie sorgenti che possono iniettare questi oggetti verso il Sistema Solare interno, portandoli ad intersecare o quantomeno ad avvicinarsi all’orbita terrestre. La parte del leone sembra svolta dalle potenti risonanze esistenti nella Fascia Principale, in particolare quelle con Giove, e dagli incontri ravvicinati con Marte. Per valutare correttamente le probabilità di un eventuale impatto è fondamentale conoscere con grande precisione i parametri orbitali.

Se sulla base di accurate misure astrometriche sembra che il rischio di collisione non sia trascurabile, osservazioni condotte con potenti radiotelescopi possono indicare le reali possibilità. Il fascio ad alta potenza emesso da un radar, 1Megawatt nel caso del radiotelescopio di 305 metri di Arecibo, è estremamente coerente, cosicché la fase dell’onda elettromagnetica è la stessa su tutto il fronte d’onda. Sfruttando la tecnica del time-delay, ossia della misura del tempo che intercorre tra l’emissione del fascio e la ricezione dell’eco, è possibile determinare la distanza del target con una precisione attorno ai cento metri e stimare la componente della velocità lungo la linea di vista, con un margine d’errore dell’ordine del millimetro al secondo, come dire che si potrebbe ricostruire il moto di una formica che si arrampica su un muro. L’analisi dell’eco permette anche di determinare le proprietà fisiche della superficie dell’asteroide. La rugosità superficiale influenza il modo in cui l’onda radar è riflessa: una superficie liscia tende a mantenere la coerenza del fascio al contrario di una scabra, mentre una metallica riflette molto più intensamente di una rocciosa coperta da regolite. Inoltre, siccome l’oggetto è in moto, la frequenza dell’onda riflessa è diversa da quella incidente, per effetto Doppler. Un’accurata analisi di queste variazioni consente di ricostruire la forma dell’asteroide con sorprendente precisione, ottenendo una sorta di fotografia, tanto più dettagliata quanto più l’oggetto è vicino. La potenza dell’eco ricevuta è, infatti, inversamente proporzionale alla quarta potenza della distanza dell’oggetto, il che spiega come mai i NEO, transitando in certi casi a distanza inferiore a quella Terra-Luna, sono i candidati ideali per questo tipo di indagini.

Proprio ieri, 26 Gennaio 2015, gli scienziati della NASA, sfruttando l’antenna di 70m di Goldstone, hanno ricostruito le immagini radar dell’asteroide 2004 BL86 che stava transitando a circa 1.2 milioni di chilometri dalla Terra, e che ha riservato una gradita sorpresa: è un asteroide di circa 325metri con una piccola luna di 70 metri che gli orbita attorno.

2004BL86-640

This GIF shows asteroid 2004 BL86, which safely flew past Earth on Jan. 26, 2015. Image Credit: NASA/JPL-Caltech

Solo di recente si è iniziato a studiare anche gli oggetti della Fascia Principale. La prima osservazione di questo tipo è stata quella di (216) Kleopatra, un asteroide lungo circa 217 km e largo 94 km, dalla caratteristica forma ad osso. Le osservazioni sono state condotte ad Arecibo, quando l’asteroide si trovava ad oltre 170 milioni di km di distanza da Terra; il fascio radar impiegava circa 19 minuti per raggiungerlo e tornare al ricevitore.

Ricostruzione radar della forma dell’asteroide 216 Kleopatra ottenuta col grande radiotelescopio di Arecibo, sfruttando la tecnica del Doppler imaging. Da notare la notevole finezza dei dettagli superficiali, soprattutto in considerazione del fatto che, al momento dell’osservazione, l’asteroide si trovava ad oltre 170 milioni di km di distanza.

Ricostruzione radar della forma dell’asteroide (216) Kleopatra ottenuta col grande radiotelescopio di Arecibo, sfruttando la tecnica del Doppler imaging. Da notare la notevole finezza dei dettagli superficiali, soprattutto in considerazione del fatto che, al momento dell’osservazione, l’asteroide si trovava ad oltre 170 milioni di km di distanza.

Il grande limite delle misure radar sta nel fatto che è possibile studiare un numero molto limitato di oggetti, almeno con gli attuali strumenti a disposizione. Viceversa, i planetologi vorrebbero poterne osservare il più grande numero possibile, per poter poi applicare considerazioni di tipo statistico, inevitabili quando si tratta di caratterizzare una popolazione che, verosimilmente, è composta di parecchi milioni di oggetti. Nell’attesa dei dati della missione spaziale GAIA, che si ripromette di rivoluzionare per quantità e qualità le conoscenze sugli asteroidi, le osservazioni fotometriche condotte da Terra continuano ad essere, da questo punto di vista, uno strumento fondamentale, poiché permettono di ottenere un discreto numero di informazioni, tutto sommato in maniera relativamente semplice anche con strumentazione commerciale.

Gli asteroidi hanno forme più o meno allungate e più o meno stravaganti, conseguenza il più delle volte di complicate esistenze dominate da violente collisioni reciproche. Se nelle prime fasi della formazione del Sistema Solare i detriti collidevano a velocità relativamente basse, favorendo in questo modo il progressivo accrescimento e la formazione di corpi di grandi dimensioni, la successiva evoluzione delle orbite, soprattutto di quelle caratterizzate da alte eccentricità ed inclinazioni, ha fatto sì che le collisioni avvenissero a velocità comprese tra i 5 ed i 20 km/s conferendo alle collisioni un carattere distruttivo. Spesso la violenza degli impatti è stata tale da sbriciolare letteralmente i corpi coinvolti. In alcuni casi dalle collisioni sono emerse le cosiddette famiglie dinamiche, costituite da piccoli e grandi oggetti con elementi propri e proprietà fisiche simili a quelle del corpo genitore.

Accurate simulazioni numeriche hanno dimostrato, per esempio, che le famiglie di Eunomia e Koronis hanno avuto un’origine di questo tipo e che tutti gli oggetti di dimensioni maggiori sono probabilmente costituiti di aggregati di frammenti debolmente legati tra loro (rubble-pile), tenuti assieme dalla gravità e dalle forze di stato solido. Un altro sottoprodotto di questo tipo di evento è la formazione di satelliti attorno al corpo principale. Attualmente sono stati individuati satelliti di asteroidi nella Fascia Principale, tra i NEO e tra i transnettuniani. E’ di qualche anno fa la scoperta di un asteroide triplo, (87) Sylvia, un oggetto di 280km di diametro con due piccole lune, rispettivamente a 710 e 1360km di distanza, che ruotano attorno ad esso su orbite equatoriali, circolari e prograde il che suggerisce con forza un’origine comune. In genere i satelliti sono piccoli rispetto ai corpi principali, ma a volte, come nel caso di (90) Antiope, le dimensioni sono confrontabili, tanto che, più correttamente, si deve parlare di asteroidi doppi.

90-Antiopet

VLT observations of the double asteroid (90) Antiope during 2004. The adaptive optics NACO instrument was used, allowing the astronomers to perfectly distinguish the two components and so, precisely determine the orbit. The two objects are separated by 171 km, and they perform their celestial dance in 16.5 hours.

Il grande interesse per gli asteroidi binari o multipli deriva dal fatto che dallo studio dell’orbita dei componenti è possibile determinare la loro massa tramite le leggi di Keplero e, se si dispone anche di una stima delle dimensioni, di ricavare la densità, parametro fondamentale per capire la struttura interna dell’oggetto. (87) Sylvia, per esempio, è sicuramente un rubble-pile con una significativa percentuale di spazi vuoti al suo interno. L’importanza di questo dato risiede nel comportamento di questi corpi in caso di collisioni successive. La presenza di molti vuoti e giunzioni al loro interno fa sì che riescano ad assorbire in maniera molto efficiente l’energia dell’impatto, con la produzione di coltri di ejecta e notevoli quantità di regolite come nel caso di (433) Eros o, addirittura, la formazione di crateri di dimensioni confrontabili con quelle dell’asteroide stesso, senza distruggerlo. Emblematico in questo senso è (253) Mathilde, la cui superficie è dominata da grandi crateri da impatto di diametro superiore al raggio medio dell’asteroide.

PIA02950

From fifty kilometers above asteroid Eros, the surface inside one of its largest craters appears covered with an unusual substance: regolith. The thickness and composition of the surface dust that is regolith remains a topic of much research. Much of the regolith on (433) Eros was probably created by numerous small impacts during its long history.

(253)_mathilde

An image of Asteroid (253) Mathilde taken by the space probe NEAR Shoemaker on 27 June 1997 from a distance of 2400 km. It is lit up by the sun from the top right. The part of the Asteroid visible in the picture has Dimensions of 59 km x 47 km. On the surface, numerous large craters are visible, like the Large Crater in the Center, named Karoo, which is more than 30 km wide. Most of it is shaded in the picture.

Un notevole salto di qualità nello studio fotometrico degli asteroidi si è avuto, come per tutti i settori dell’Astrofisica, con l’introduzione dei sensori a stato solido, i cosiddetti dispositivi ad accoppiamento di carica o CCD. Attualmente con un telescopio di 20 cm di diametro è possibile studiare asteroidi di 14-esima magnitudine con un buon grado di precisione ed affidabilità laddove, prima dell’avvento dei CCD, sarebbe stato necessario uno strumento di apertura nettamente maggiore.

Tutte le curve di luce a colori riportate di seguito sono state ottenute ormai una decina di anni fa presso l’Osservatorio Astrofisico R.P.Feynman con un Dall-Kirkham di 21cm di apertura nell’ambito dell’ALP (Asteroid Lightcurve Program) che avevo attivato in quegli anni.

(721)Tabora

In un ideale passaggio di consegne generazionale e tecnologico ecco la curva di luce di (721) Tabora il cui periodo di rotazione stimato da Zappalà et al. nel 1989 era di 8 ore (Rotational properties of outer belt asteroids, Based on observations performed mainly at the European Southern Observatory, ESO, La Silla, Chile. Icarus 82, 354-368.) e che riuscii a rifinire in 7.982 ± 0.001 ore

Dall’analisi della curva di luce si ricava innanzitutto il periodo di rotazione dell’asteroide che, in genere, ruota attorno ad un asse fisso, mostrando all’osservatore le superfici di area massima e minima in maniera ciclica.

Images of 433 Eros from NEAR Shoemaker. Courtesy of JHU/APL Two days after NEAR Shoemaker began its orbit of Eros, the spacecraft captured this rotation movie as it moved closer to the asteroid. The movie shows a full rotation on February 16, 2000, as viewed from a range of about 340 kilometers

Images of (433) Eros from NEAR Shoemaker.
Courtesy of JHU/APL. Two days after NEAR Shoemaker began its orbit of Eros, the spacecraft captured this rotation movie as it moved closer to the asteroid. The movie shows a full rotation on February 16, 2000, as viewed from a range of about 340 kilometers

Un sufficiente numero di curve di luce, ottenute con osservazioni a diverse longitudini eclittiche e distribuite nell’arco di tre o quattro apparizioni, consente di determinare la direzione dell’asse di rotazione. Inoltre, permette la costruzione di un modello tridimensionale abbastanza dettagliato della struttura su larga scala dell’asteroide mediante la tecnica matematica dell’inversione delle curve di luce.

43-ariadne

Tre curve di luce dell’asteroide (43) Ariadne affiancate dal modello tridimensionale ottenuto con la tecnica matematica dell’inversione di un cospicuo numero di curve di luce, acquisite in epoche differenti. La diversa forma e ampiezza delle curve è dovuta al cambiamento delle condizioni di illuminazione durante ogni apparizione. (Kaasalainen et al. Icarus 159 (2002) mod.)

Il motivo per cui è necessario osservare l’oggetto sotto diverse prospettive è che in questo modo l’illuminazione laterale e radente mette in evidenza, grazie al gioco di luci e di ombre, anche le eventuali irregolarità nella forma, almeno su scala macroscopica. Un asteroide sferico non mostra alcuna variazione significativa nella curva di luce nel corso della sua rotazione, ma anche un oggetto fortemente elongato esibisce un comportamento analogo se osservato in direzione del suo polo. Ma, mentre nel primo caso non ci sono variazioni di sorta nemmeno se la visione è equatoriale, nel secondo si ha un’alternanza evidentissima di massimi e minimi, dovuta alla grande differenza nell’estensione dell’oggetto lungo gli assi perpendicolari a quello di rotazione. Non è raro, in questo caso, riscontrare ampiezze nella curva di luce anche di una magnitudine che, nel caso di asteroide approssimabile nella forma ad un ellissoide di Jacobi, implica un rapporto di circa 5/2 tra i due assi principali.

In linea di principio per ottenere una buona curva di luce è sufficiente un centinaio di punti ben distribuiti lungo il periodo. Tuttavia, un numero maggiore è sicuramente preferibile, sia per evidenziare eventuali irregolarità morfologiche, sia per minimizzare gli errori nelle misure dovuti, per esempio, a peggioramento delle condizioni meteo durante le osservazioni. La maggior parte degli asteroidi ruota con periodi compresi tra 6 e 12 ore perciò un paio di notti di misure, almeno durante l’inverno, sono sufficienti per determinare in maniera accurata il periodo. E’ opportuno però aggiungere una terza sessione a distanza di qualche giorno per ottenere una maggiore precisione.

(573)Recha

Generalmente la curva di luce ha un andamento di tipo sinusoidale con due massimi e due minimi, spesso di altezza e profondità differenti. Un esempio è la curva di luce di (1459) Magnya; quest’oggetto era stato scelto come obiettivo della prima osservazione interferometrica di un asteroide con il VLTI dell’ESO, con l’intento di ricavarne il diametro per via diretta. La curva di luce, oltre a permettere di rifinire il periodo di rotazione, è stata utile anche per individuare in quale fase si trovava l’asteroide al momento delle osservazioni interferometriche.

(1459)Magnya

Curva di luce di (1459) Magnya, raro asteroide della zona esterna della Fascia principale con una crosta basaltica e target della prima osservazione interferometrica col VLTI dell’ESO (Delbò et al. “MIDI observations of (1459) Magnya: First attempt of interferometric observations of asteroids with the VLTI”, Icarus, vol. 181, pp. 618-622 (2006)

Analoghe considerazioni valgono quando lo studio fotometrico è contemporaneo alle osservazioni radar, soprattutto se di oggetti non ancora ben caratterizzati. Alcuni asteroidi di dimensioni abbastanza contenute e monolitici hanno periodi di rotazione di poche ore o addirittura di pochi minuti. Se fossero di tipo rubble-pile, sarebbero rapidamente disgregati dalla forza centrifuga. La barriera tra i due tipi sembra collocarsi attorno alle 2.25 ore, ma ulteriori osservazioni possono migliorare in modo rilevante la statistica relativa. Esistono anche asteroidi con periodi di rotazione di giorni e perfino di mesi ed altri per i quali questo dato non è univocamente determinabile, come i cosiddetti asteroidi ubriachi. Si tratta di oggetti che non ruotano attorno a nessuno degli assi principali d’inerzia, ed anzi la direzione dell’asse di rotazione è continuamente variabile nel tempo. Celebre è il caso di (4179) Toutatis, un asteroide costituito da due corpi irregolari di 2.5 e 4 chilometri, praticamente a contatto, la cui rotazione è il risultato di due diversi tipi di moto, con periodi di 5.4 e 7.3 giorni terrestri, che si combinano in maniera tale che l’orientazione nello spazio di questo asteroide, non si ripete mai con le stesse modalità. Si tratta di una sorta di relitto che testimonia la grande complessità della dinamica collisionale nelle prime fasi della formazione del Sistema Solare. A causa degli attriti e delle tensioni interne, che dissipano grandi quantità di energia, queste rotazioni ubriache tendono a regolarizzarsi su tempi scala dell’ordine di qualche decina di milioni di anni, in maniera tanto più rapida quanto più la rotazione è veloce per una data dimensione dell’asteroide, ma Toutatis ruota così lentamente che il tempo necessario perché questo processo di stabilizzazione diventi effettivo è più lungo di quello trascorso dalla formazione del Sistema Solare.

Anche quando la rotazione non è “ubriaca”, la determinazione del periodo, a volte, è un vero rompicapo e sono necessarie diverse notti di misure per risolvere il problema. Può succedere, infatti, che l’asteroide sia binario, cosicché nella curva di luce si sovrappongono periodi differenti e perfino eclissi. Un campanello d’allarme può essere la presenza di un numero maggiore dei canonici due estremi per ciclo. Un asteroide nella lista dei sospetti binari, che esibisce ben quattro massimi e minimi, è (2346) Lilio. Potrebbe anche trattarsi di un oggetto singolo di tipo ellissoidale, ma molto deformato.

Curva di luce di 2346 Lilio. La presenza di ben quattro massimi e minimi fa pensare che forse potrebbe trattarsi di un asteroide binario, ma non è da escludersi la possibilità che si tratti solo di un oggetto dalla complicata morfologia.

Curva di luce di (2346) Lilio. La presenza di ben quattro massimi e minimi fa pensare che forse potrebbe trattarsi di un asteroide binario, ma non è da escludersi la possibilità che si tratti solo di un oggetto dalla complicata morfologia.

Irregolarità macroscopiche nella forma sono evidenti anche nel caso di (126) Velleda. Sarà sicuramente interessante tornare a studiare questi oggetti durante le prossime apparizioni, quando le differenti condizioni geometriche di illuminazione potranno evidenziare o anche nascondere alcune delle caratteristiche presenti nelle curve di luce e quindi fornire ulteriori indicazioni sulla loro morfologia.

(126)Velleda

Curva di Luce di (126) Velleda, un asteroide caratterizzato da una morfologia piuttosto accidentata, dovuta probabilmente ad una tumultuosa esistenza, con frequenti collisioni con altri suoi simili.

Ha un certo fascino iniziare a misurare un asteroide di cui non se ne sa assolutamente niente. E’ come intraprendere l’esplorazione di un’isola che fino a quel momento era solo un punto su una mappa. E non è detto che non celi un piccolo tesoro.

Domenico Licchelli – 2015

Approfondimento

Mentre la determinazione del periodo di rotazione è normalmente cosa rapida e facile (una volta bastava un buon fotometro fotoelettrico, oggi un buon CCD), più complicata è la determinazione della forma e dell’asse di rotazione. In questo articolo voglio raccontarvi uno dei vari metodi, quello che ho usato più spesso (in quanto messo a punto proprio da … me) e che risulta anche il più semplice da spiegare geometricamente e senza utilizzare formule più o meno complicate.
L’ipotesi fondamentale che bisogna fare per poter arrivare a un risultato accettabile è che la forma dell’asteroide sia assimilabile a un ellissoide a tre assi (a>b>c), rotante attorno al semiasse minore c. Attenzione! Questo non vuol dire che tutti gli asteroidi siano forme di equilibrio, ma solo che, come tutti i frammenti collisionali, hanno forme più o meno allungate e non simmetriche. La rotazione intorno all’asse minore è comprovata dalla teoria e dalla casistica, e si lega a condizioni che si riferiscono al momento angolare.
Le forme a tre assi sono più che giustificabili, guardando i sassi di una spiaggia ciottolosa in cui il mare abbia smussato gli angoli delle pietre (Fig. 2).

pebble-beach-and-sea
Ammettiamo, quindi, che il nostro asteroide si presenti come un ellissoide a tre assi, rotante attorno all’asse minore. Magnifico. Tuttavia, noi continuiamo a vedere, da terra, solo un punto luminoso e quindi l’ellissoide può essere orientato in qualsiasi modo nella sua posizione celeste.
La sua prima curva di luce, in genere, ci aiuta già a capire la forma grossolana: se l’ampiezza, ossia la differenza tra massimi e minimi, è abbastanza rilevante vuol dire che l’ellissoide è piuttosto allungato. Come mai? Presto detto. Prendiamo ad esempio un oggetto che abbia l’asse di rotazione perfettamente perpendicolare alla linea di vista. In Fig. 3, nella parte alta, vi è l’ellissoide visto dal polo (e quindi l’ellisse mostra proprio gli assi maggiori a e b), mentre le due rappresentazioni sottostanti si riferiscono a vari istanti.

aste3

Figura 3. In alto un ellissoide a tre assi visto dalla direzione dell’asse polare. Durante la sua rotazione l’area rimane costante. Se, invece, viene visto dalle posizioni 1, 2, 3, 4 l’area cambia continuamente e passa da un minimo a un massimo. Come conseguenza, durante un intero periodo di rotazione d’identificano due massimi e due minimi di luce.

In particolare, l’area della superficie ellittica vista da terra passa da un minimo (1) quando si vede l’asse intermedio b (πbc) a un massimo (2) (dopo novanta gradi di rotazione) quando si vede l’asse maggiore a (πac). Poi, dopo altri 90°, di nuovo πbc (3), seguita da πac (4), per concludersi, infine, nuovamente con πbc (1). L’asse minore c si vede sempre, proprio perché l’asse di rotazione è perpendicolare alla linea di vista.

In questo caso così favorevole si potrebbe immediatamente risalire al rapporto tra gli assi maggiori dell’ellissoide (a/b), scrivendo la formula:

m2 – m1 = – 2.5 log (Imax/Imin) = – 2.5 log (Amax/Amin) = – 2.5 log (πac/ πbc) = – 2.5 log (a/b)

notando che m2 – m1 è proprio l’ampiezza della curva di luce in quanto è la differenza di magnitudine tra massimo e minimo, mentre l’intensità luminosa che entra nel logaritmo è, nel caso di luce riflessa, proporzionale solo all’area apparente vista dall’osservatore. In altre parole, più uno “specchio” è grande e più luce riflette.
Se fossimo sicuri di essere nelle condizioni della Fig. 3 avremmo già ottenuto un risultato importante. Purtroppo, esso è solo un caso fortunato, che, però, si verifica sempre (prima o poi) per qualsiasi asteroide e per qualsiasi orientazione del suo asse di rotazione. Basta avere pazienza. Ora vi mostro perché…
Consideriamo due casi estremamente particolari, ma molto indicativi. L’asteroide si trova su un’orbita circolare e complanare con quella terrestre. La direzione del suo asse di rotazione è perpendicolare all’orbita stessa (Fig. 4).

aste4

Figura 4. Asteroide e Terra rivolvono su orbite complanari e l’asse di rotazione è perpendicolare al piano orbitale.

Le mutue posizioni Terra-asteroide sono mostrate per 4 particolari opposizioni. In realtà, sarebbe stato inutile, in quanto l’angolo tra asse di rotazione e linea di vista rimane sempre uguale a 90° (visione equatoriale). In qualsiasi opposizione si osservi, si ricade nel caso di Fig. 3 (in basso). Otteniamo sempre la stessa ampiezza di curva di luce.

Già dalla prima curva di luce, si ricava subito il rapporto tra gli assi maggiori a/b, ma nessuna informazione sul rapporto a/c o b/c. Sappiamo anche la direzione dell’asse di rotazione (non variando l’ampiezza nelle varie opposizioni l’asse deve essere perpendicolare). Se facciamo un diagramma dove in ascissa mettiamo, ad esempio, la longitudine dell’asteroide e in ordinata l’ampiezza della curva di luce, otteniamo dei punti perfettamente allineati lungo una parallela all’asse delle ascisse.
Altrettanto peculiare, ma più interessante, il caso mostrato nella Fig. 5.

aste5

Figura 5. Come la Figura 4, ma l’asse di rotazione giace sul piano orbitale.

In questo caso le orbite sono sempre complanari, ma l’asse di rotazione giace sul piano orbitale (un po’ come Urano). Vi è allora un punto in cui la Terra vede l’asteroide proprio lungo l’asse di rotazione (posizione a destra), ossia l’osservatore non rileva nessuna variazione luminosa durante il periodo di rotazione dell’oggetto celeste (visione polare). Siamo, infatti, nel caso mostrato in alto nella Fig. 3. Per un opposizione che cada a 90° da questa si ha, invece, un angolo tra asse di rotazione e linea di vista uguale a 90° (come in Fig. 3, in basso) e quindi l’ampiezza della curva raggiunge il suo valore massimo (visione equatoriale). Dopo altri 90° ricadiamo nella visione polare (anche se si vede il polo opposto) e poi ancora nella visione equatoriale.

Nelle configurazioni intermedie tra questi quattro casi peculiari, l’asse di rotazione dell’asteroide forma un angolo variabile tra 0° e 90°, che prende il nome di angolo di aspetto A. In realtà l’angolo andrebbe da 0° a 180° o da – 90° a + 90°, a seconda di come si misuri. Questo fatto ha poca importanza (per adesso, ma ne parleremo più avanti), dato che abbiamo assunto come forma dell’asteroide quella di un ellissoide perfetto, la cui luminosità dipende solo dall’area apparente mostrata all’osservatore.
Al variare dell’angolo di aspetto, l’ampiezza assume valori intermedi tra il valore minimo, uguale a zero (visione polare), e il valore massimo (visione equatoriale). Osservazioni eseguite in varie opposizioni permettono di costruire la curva ampiezza-longitudine. Questa volta non è più una retta parallela all’asse delle ascisse, ma una curva continua che assomiglia, in qualche modo, a una curva di luce. Il valore massimo è sicuramente la visione equatoriale e quindi ci permette di conoscere nuovamente a/b. Inoltre, la posizione in cui l’ampiezza diventa zero, indica proprio la longitudine del polo.
In questo caso peculiare, sappiamo anche che la latitudine della direzione dell’asse di rotazione è zero, dato che l’ampiezza minima è nulla e quindi l’asse deve giacere sul piano orbitale dell’asteroide. Calcolando, infine, la differenza di magnitudine tra la visione polare (valore costante durante l’intera rotazione) e quella della visione equatoriale al massimo della curva di luce, si ottiene subito anche il rapporto tra b e c. Si usa la solita formula:

mP – mE = – 2.5 log (A(polare)/Amax(equatoriale)) = – 2.5 log (πab/ πac) = – 2.5 log (b/c)

Il “caso” è risolto completamente.
Come già detto, però, questa è una situazione del tutto peculiare, molto didattica, ma poco realistica. La situazione “normale” è decisamente più complicata. Ciò che capita è quanto raffigurato in Fig. 6.

aste6

Figura 6. Come Figura 5, ma questa volta l’asse forma un angolo qualsiasi col piano orbitale.

L’inclinazione del’asse di rotazione sul piano orbitale è diversa da 0° e da 90° (o, se preferite, la latitudine, nel caso di orbita complanare con quella dell’eclittica). Tuttavia, dobbiamo notare due cose importanti. Anche in questo caso realistico, prima o poi, si avrà un’opposizione con una visione equatoriale (angolo di aspetto A uguale a 90°).

Se questa asserzione vi lascia un po’ dubbiosi, pensate alle stagioni terrestri. Esistono sempre due punti in cui l’asse di rotazione della Terra è perpendicolare al piano dell’eclittica e questi sono gli equinozi. Essi vi sono comunque, indipendentemente da quanto vale l’angolo tra asse ed eclittica. La visione polare è invece impossibile da ottenere e si ha soltanto un valore minimo di ampiezza, in corrispondenza, però, della posizione a 90° dalla visione equatoriale. In altre parole, il minimo della curva ampiezza-longitudine indica, ancora una volta, la longitudine del polo dell’asteroide. Nel caso terrestre questi sono i punti dei solstizi. Alcuni esempi di curve ampiezza-longitudine sono riportate nella Fig. 7.

aste7

Figura 7. Alcune curve ampiezza-longitudine. Qualsiasi asteroide raggiunge sempre il massimo di ampiezza (visione equatoriale). Il minimo, invece, può essere più alto o più basso, Indica comunque abbastanza bene la longitudine del polo.

Possiamo calcolare, come al solito, il rapporto a/b, sfruttando l’ampiezza misurata nella visione equatoriale (che si ha sempre, ripeto). Resta più problematica la determinazione del rapporto b/c e della latitudine del polo. Ci aiuta la Fig. 8 che riporta la situazione per un’opposizione e per un orientamento qualsiasi dell’asse di rotazione. L’osservatore vede, in realtà, una proiezione dell’asteroide-ellissoide su un piano perpendicolare alla linea di vista. Essa si ottiene, visivamente, come la sezione perpendicolare di un cilindro ellittico che abbia la direzione Terra-asteroide come asse e che sia tangente all’asteroide.

aste8

Figura 8

L’angolo tra asse del cilindro e asse di rotazione è proprio l’angolo di aspetto A. La proiezione è anch’essa un’ellisse, ovviamente, ma i suoi assi sono, momento per momento, delle funzioni abbastanza semplici che legano angolo di aspetto e rapporti tra i semi-asse dell’asteroide.

Particolare rilevanza hanno, ovviamente, quelli relativi al massimo e al minimo della curva di luce. Non intendo sviluppare le formule, in quanto approfittano di un po’ di trigonometria e di qualche passaggio più o meno noioso, ma posso assicurarvi che esiste una soluzione che dona sia la forma che i rapporti tra gli assi.
Abbiamo fatto qualche ipotesi restrittiva, ma le applicazioni ai casi reali confermano che l’approccio è più che sufficiente per una determinazione abbastanza accurata. I risultati ottenuti per Eros, Kleopatra e Vesta (anche se in modo più elaborato) sono perfettamente in accordo con quanto osservato “in loco” (Eros e Vesta) o attraverso le immagini radar (Kleopatra).
La determinazione dell’asse di rotazione resta, comunque, un po’ ambigua. In altre parole, esistono quasi sempre due soluzioni altrettanto valide. Questo fatto si può notare nella Fig. 9.

aste9

Figura 9. Si vedrebbe la stessa superficie apparente per qualsiasi posizione dell’asse lungo il cono con centro nella posizione dell’asteroide e ampiezza uguale all’angolo di aspetto.

Qualsiasi sia la configurazione dell’asteroide nello spazio, la curva di luce non cambia se l’asse di rotazione descrive un cono circolare, di ampiezza uguale all’angolo di aspetto A.
Fortunatamente, questa enorme ambiguità si ha solo per una singola opposizione. Se ne abbiamo altre e raffiguriamo, nel piano longitudine-latitudine celeste, le circonferenze che hanno centro nella posizione dell’asteroide e raggio uguale all’angolo di aspetto, esse hanno due soli punti in comune (Fig. 10).

aste10

Figura 10. Se l’orbita non è inclinata ed è circolare, l’ambiguità tra i due poli non non può essere risolta.

La loro longitudine e latitudine sono i possibili valori del polo dell’asteroide. In modo analitico questo fatto si traduce dicendo che l’angolo di aspetto è calcolato solo in valore assoluto (ossia può essere sia positivo che negativo, come già accennato in precedenza).
Per risolvere l’ambiguità, è necessario che l’orbita non sia complanare con l’eclittica e, magari, che sia anche piuttosto ellittica. In questi casi vi è una piccola differenza tra le due soluzioni: una delle due intersezioni è meno “buona” dell’altra.
Tuttavia, dato che gli errori sono molti (macchie di albedo, forma non assimilabile completamente a un ellissoide a tre assi, rugosità superficiale, effetto dell’angolo di fase solare sulla luminosità della superficie esposta all’osservatore (ossia l’ombra su una superficie convessa), ecc.), l’ambiguità è difficilmente risolta e le differenze riscontrate negli errori stimati per le due soluzioni sono comparabili o minori di quelli introdotti da altre cause.
In ogni modo, si ottengono valori più che accettabili per lavori di tipo statistico e anche per pianificare missioni spaziali dirette agli asteroidi, per le quali è necessario avere una stima dell’asse di rotazione e della forma.

Vincenzo Zappalà

Rileggiamo il Sidereus Nuncius – I satelliti di Giove – Domenico Licchelli

Copertina_Rileggere-il-Sidereus-NunciusIn questo capitolo parleremo del Sidereus Nuncius, l’opera in cui il grande Galileo riporta le prime osservazioni eseguite con il suo perspicillum (cannocchiale). Descrive la Luna, la Via Lattea, le stelle, per concludere con la sua più importante scoperta: i satelliti di Giove. Per capire la genialità, l’entusiasmo e la freschezza del libro, ne estrarremo le parti più importanti (tradotte in italiano e scritte in corsivo); le accompagneremo con immagini riprese da telescopi moderni per mostrare la grande precisione delle osservazioni galileiane, eseguite con uno strumento oggi considerato “ridicolo”; inseriremo alcuni disegni originali; commenteremo passo dopo passo lo scritto del sommo pisano evidenziandone le conclusioni corrette (molte) e quelle errate (poche); quando necessario, aggiungeremo note più tecniche relative alle immagini. Sarà sicuramente una lettura entusiasmante e piena di sorprese, conosciuta da pochi e ricca di spunti di riflessione. Forse vi farà anche venire voglia di accostarvi maggiormente alla visione del Cielo …

Sidereus_Nuncius_1610.GalileoLa dedica
… Ecco dunque quattro stelle dedicate al vostro nome illustre, ma non scelte tra quelle fisse, numerose e servili, ma nella schiera dei pianeti. A voi ho riservato quelle che con movimento differente e veloce compiono l’orbita attorno a Giove, stella nobilissima, ed insieme ad essa, con mirabile concordia, compiono il giro intorno al centro del mondo, il Sole, in dodici anni. Quando le scoprii sotto i vostri auspici, serenissimo Cosimo, ancora ignote a tutti gli astronomi precedenti, con ragione decisi di insignirle con l’augusto nome della vostra Casa. Essendo stato io il primo ad averle studiate, chi mai potrà riprendermi se imporrò ad esse il nome di ASTRI MEDICEI? …
Anche Galileo doveva mangiare. Il suo dono al serenissimo Cosimo trasuda di rispetto, deferenza ed ossequio. E non dona al Signore di Firenze una “cosa” qualsiasi, ma “quelle che con movimento differente e veloce compiono l’orbita attorno a Giove, stella nobilissima …”. E’ ovvio: anche il suo dono deve essere nobile come chi lo riceve. E poi il finale: “chi mai potrà accusarmi di essere stato troppo generoso? I satelliti sono miei e ne faccio quello che voglio!” E’ quasi commovente l’umanità che se ne evince.

Le scoperte
… Grande cosa è stata aggiungere alla immensa moltitudine delle stelle fisse, visibili fino ad oggi ad occhio nudo, altre innumerevoli, mai prima osservate, il cui numero supera più di dieci volte quello delle conosciute …
… Bellissima e piacevole cosa è stato anche vedere il corpo della Luna, lontano da noi quasi sessanta raggi terrestri, così vicino come se si trovasse a soli due raggi. In tal modo il diametro di essa appariva trenta volte, la superficie novecento, ed il volume quasi ventisettemila volte più grande di quanto non si vedesse ad occhio nudo. Attraverso questa esperienza chiunque noterebbe che la Luna non è ricoperta da una superficie liscia e levigata, ma scabra ed ineguale e, proprio come la Terra, piena di sporgenze, cavità ed anfratti …
… Ma quello che supera ogni possibile meraviglia è stato aver scoperto quattro astri erranti, da nessuno mai visti precedentemente, che come Venere e Mercurio attorno al Sole, ruotano attorno ad un astro tra i più grandi conosciuti, ora precedendolo, ora inseguendolo, senza mai allontanarsene più di una breve distanza ben delimitata …”

Il cannocchiale
… Circa dieci mesi fa mi giunse notizia che un certo Fiammingo aveva costruito un “occhiale” attraverso il quale oggetti molto lontani e confusi si vedevano molto vicini e distinti. Questa cosa mi venne confermata dopo pochi giorni dal nobile francese Iacopo Badovere di Parigi. Ciò fu causa della mia disperata volontà di ottenere uno strumento analogo, che riuscii a costruire basandomi sulla teoria della rifrazione luminosa. Preparai un tubo di piombo alle cui estremità inserii due lenti, entrambe piane da una parte e dall’altra una convessa e una concava. Posto l’occhio dalla parte concava vidi gli oggetti tre volte più vicini e nove volte più grandi di quanto potessi fare ad occhio nudo. Poi ne costruii uno più accurato che mi permise di vedere gli oggetti ingranditi sessanta volte. Infine, senza risparmiare fatica e spese, riuscii a realizzare uno strumento eccezionale, con il quale arrivai a vedere le cose trenta volte più vicine e mille volte più grandi che viste ad occhio nudo …”

Questo esemplare è uno degli unici due cannocchiali esistenti certamente di Galileo. Rivestito in pelle con dorature impresse a caldo, lo strumento fu donato a Cosimo II subito dopo la pubblicazione del Sidereus Nuncius (19 marzo 1610). Vetro, legno, pelle; lunghezza 92 cm, diametro 6 cm Firenze, Istituto e Museo di Storia della Scienza

Questo esemplare è uno degli unici due cannocchiali esistenti certamente di Galileo. Rivestito in pelle con dorature impresse a caldo, lo strumento fu donato a Cosimo II subito dopo la pubblicazione del Sidereus Nuncius (19 marzo 1610). Vetro, legno, pelle; lunghezza 92 cm, diametro 6 cm Firenze, Istituto e Museo di Storia della Scienza

Anche se forse non fu proprio il primo a costruirlo, Galileo ama il suo gioiello quasi fisicamente. Sa che deve migliorarlo in tutti i modi e lo fa con grande fatica sia fisica che finanziaria.

I satelliti di Giove
… Descriverò adesso le osservazioni dei quattro PIANETI da me scoperti e mai visti prima d’ora dal principio del mondo e darò notizie delle loro posizioni, mutamenti, movimenti, invitando tutti gli astronomi a studiare e definire i loro periodi che finora non riuscii a stabilire per la limitatezza del tempo avuto a disposizione (due mesi soltanto). Ricordo però che per compiere queste osservazioni è necessario utilizzare un cannocchiale “esattissimo” come quello di cui parlai all’inizio …
Importantissimo brano per comprendere il carattere di Galileo e la sua emozione di fronte ad un nuovo Universo che gli si apre improvvisamente davanti agli occhi. Innanzitutto l’orgoglio non molto velato (“mai visti prima d’ora dall’inizio del mondo”), poi il suo caloroso invito a seguirlo nella conquista del Cosmo senza paure o remore (“invitando tutti gli astronomi”) ed infine la sua ammirazione per lo strumento da lui creato, ma anche la paura che le sue potenzialità non vengano adeguatamente comprese se riprodotto senza la necessaria abilità (“è necessario utilizzare un cannocchiale esattissimo”).”

La scoperta
“… Il giorno sette gennaio, dunque, dell’anno milleseicentodieci, a un’ora di notte, mentre col cannocchiale osservavo gli astri mi si presentò Giove; poiché avevo preparato uno strumento eccellente, vidi (e ciò prima non mi era accaduto per la debolezza dell’altro strumento) che intorno gli stavano tre stelle piccole ma luminosissime; sebbene le credessi fisse, mi destarono una certa meraviglia, perché apparivano disposte esattamente secondo una linea retta e parallela all’eclittica, e più splendenti delle altre di grandezza uguale alla loro. Esse e Giove erano in questo ordine:

satelliti Medicei-280708_2132T

cioè due stelle erano ad oriente ed una ad occidente. La più orientale e l’occidentale apparivano un po’ maggiori dell’altra. Non mi curai minimamente della loro distanza da Giove, perché, come ho detto, le avevo credute fisse. Quando, non ne so nemmeno il motivo, mi rivolsi di nuovo alla medesima indagine il giorno otto, vidi una disposizione ben diversa: le tre stelle infatti erano tutte ad occidente rispetto a Giove, e più vicine tra loro che la notte antecedente e separate da eguali intervalli, come mostra il disegno seguente:

satelliti medicei-290708_2133TC’è da rimanere estasiati di fronte alla semplicità, il rigore, l’emozione che scaturisco da queste poche righe. Galileo si accorge di avere fatto una scoperta epocale, ma cerca di mantenere la calma e non rigetta subito l’ipotesi di trovarsi di fronte a delle stelle fisse (quindi niente di speciale) ma non può non esprimere il suo dubbio in proposito (“disposte esattamente lungo una linea retta e parallela all’eclittica”). Mente sicuramente quando dice: “non so nemmeno il motivo, mi rivolsi di nuovo alla stessa indagine…”. Sicuramente non vedeva l’ora di riosservare quelle strane stelle la notte dopo!

A questo punto vale la pena di fare una breve constatazione. Nel corso dei secoli sono state molte le speculazioni riguardo alle capacità osservative di Galilei. In particolare ci si è chiesti come mai le osservazioni dei satelliti medicei siano state tanto accurate mentre al contrario i disegni lunari mostravano una certa approssimazione. In realtà se si analizzano accuratamente le posizioni dei satelliti si scopre che anche queste osservazioni sono abbastanza approssimative. In diversi casi il Nostro non riuscì a vedere distinti i satelliti quando erano piuttosto vicini tra loro oppure quando qualcuno era alla massima elongazione dal pianeta. Queste limitazioni sono dovute ad almeno due grandi cause: lo scarso potere risolutivo del telescopio usato, dovuto sia al ridotto diametro, sia alle pesanti aberrazioni presenti nella lente principale e negli oculari, oltre che al modesto campo di vista. E’ facile verificare che con un moderno binocolo si riesce ad osservare una zona ampia diversi gradi, ma è sufficiente utilizzare un piccolo rifrattore a lunga focale per vederlo ridursi drasticamente. Inoltre un normale binocolo è oggi in genere di gran lunga più corretto dei cannocchiali galileiani per cui è difficile rendersi conto delle difficoltà incontrate dal grande scienziato pisano. Anzi, rileggere le sue descrizione e le sue considerazioni è tuttora uno straordinario esempio di grande Scienza ed in particolare di grandissime capacità osservative e deduttive.

satelliti Medicei-060808_2208Tsatelliti medicei-210708_2221TLo stupore
“… A questo punto, non pensando assolutamente allo spostamento delle stelle, cominciai a chiedermi in qual modo Giove si potesse trovare più ad oriente di quelle stelle fisse, quando il giorno prima era ad occidente rispetto a due di esse. Ed ebbi il dubbio che Giove si muovesse ben diversamente da quanto descritto dai calcoli astronomici, ed avesse col proprio moto oltrepassato le tre stelle. Per questo aspettai con grande ansia la notte successiva. Purtroppo il cielo coperto di nubi mi precluse l’osservazione. Ma il giorno dieci le stelle mi apparvero in questa posizione rispetto a Giove:

satelliti medicei-130808_2249T_ombra

cioè ve n’erano due soltanto, ed entrambe orientali: la terza, come immaginai subito, era nascosta da Giove.
Lo stupore c’è davvero. Ma non siamo del tutto sicuri che Galileo pensasse veramente ad un movimento imprevisto di Giove che avrebbe distrutto le teorie in cui credeva ciecamente. Sapeva già di trovarsi di fronte a qualcosa di nuovo ed aveva quasi paura della sua eccezionale scoperta. Voleva esserne sicuro e non illudersi troppo presto (di nuovo esce la sua grande freddezza e precisione), ma questa volta non riesce a nascondere l’impazienza di tornare al suo cannocchiale. Quando ci riesce non ha alcun problema a pensare subito che “la terza stella” non visibile sia nascosta dal pianeta. Aveva già capito tutto, ma aspettava la prova definitiva.

La spiegazione
“… Erano sempre lungo la stessa direzione rispetto a Giove, e lungo la linea dello Zodiaco. Quando mi accorsi di questo compresi che simili spostamenti non potevano in alcun modo essere attribuiti a Giove, sapendo inoltre che le stelle osservate erano sempre le stesse (non vi erano altre stelle di pari luminosità lungo un notevole tratto della linea dello Zodiaco, sia prima che dopo). Mutando la perplessità in meraviglia, compresi che l’apparente mutazione non era di Giove ma delle stelle da me scoperte; e per questo pensai di dovere da allora in poi osservare il fenomeno attentamente, scrupolosamente ed a lungo …
Ogni reticenza cade e la spiegazione fluisce senza tentennamenti. Probabilmente il cambiamento da “perplessità a meraviglia” era già avvenuto nel suo intimo. Riesplode l’orgoglio, più che giustificato: “la mutazione … era delle stelle da me scoperte”. E chi mai poteva dubitare che Galileo avesse già deciso di continuare a studiare il suo fenomeno con attenzione e per molto tempo?
… Dopo pochi giorni capii anche che le stelle che compivano i loro giri attorno a Giove non sono erano solo tre, ma quattro. Misurai anche le loro reciproche distanze, annotai tutte le ore delle osservazioni, soprattutto quando ne feci molte in una stessa notte. Infatti le rivoluzioni di questi pianeti sono così veloci che spesso si notano differenze anche orarie …
L’emozione e la gioia dell’uomo lasciano nuovamente il posto alla precisione, al rigore ed allo scrupolo dello scienziato.

satelliti medicei-120808_2214TLe conclusioni
… Queste sono le osservazioni dei quattro Astri Medicei da me scoperti recentemente e per la prima volta, sulle quali, pur non essendo ancora possibile dedurre i loro periodi, si deducono già importanti conclusioni. In primo luogo, poiché talvolta seguono e talvolta precedono Giove ad intervalli uguali e si allontanano da esso solo per un breve tratto, sia ad oriente che a occidente, accompagnandolo sia nel suo moto retrogrado che in quello diretto, a nessuno può nascer dubbio che non compiano attorno a Giove le loro rivoluzioni e, nello stesso tempo, effettuino tutti insieme il loro giro intorno al centro del mondo in un periodo di dodici anni ..”
La spiegazione è precisa, attenta ed esauriente, permeata nuovamente di orgoglio (“da me scoperti”). Ed alla fine quasi accusa di stupidità chiunque osi confutargli la sua interpretazione.

Una nuova visione dell’Universo
“… Notai anche che sono più veloci le rivoluzioni dei pianeti che descrivono orbite più strette intorno a Giove. infatti le stelle più vicine a Giove spesso si vedevano orientali mentre il giorno prima erano apparse occidentali, e viceversa, mentre invece il pianeta che descrive l’orbita maggiore, ad un accurato esame, mostrava aver periodo semimensile. Ho ottenuto quindi un valido ed eccellente argomento per togliere ogni dubbio a coloro che, accettando tranquillamente nel sistema di Copernico la rivoluzione dei pianeti intorno al Sole, sono ancora turbati dal fatto che solo la Luna giri intorno alla Terra, mentre entrambi compiono ogni anno la loro rivoluzione attorno al Sole, sì da ritenere per tale motivo che si debba rigettare come impossibile l’intera struttura eliocentrica dell’universo. Ora, infatti, non abbiamo un solo pianeta che gira intorno a un altro (la Luna attorno alla Terra) mentre entrambi percorrono la grande orbita intorno al Sole, ma ben quattro stelle erranti fanno lo stesso attorno a Giove ed insieme al grande pianeta, completano la loro ampia orbita attorno al Sole in un periodo di dodici anni …”
Galileo pone l’accento sulla parte fondamentale della sua scoperta, di valenza non solo scientifica. Non solo la Terra ha un satellite, ma anche Giove, ed addirittura quattro. Questo non solo distrugge definitivamente le vecchie teorie geocentriche, ma leva ogni dubbio a chi ancora tentennava vedendo che il nostro pianeta era il solo ad avere il privilegio di una Luna tutta sua. La breve descrizione e le ferme e chiare conclusioni di Galileo fanno nascere la nuova visione dell’Universo, che aprirà in breve le porte all’astrofisica moderna.

L’atmosfera di Giove
“…Ed infine non bisogna tacere il motivo per cui gli Astri Medicei sembrano talvolta più grandi del doppio, mentre compiono attorno a Giove le loro piccolissime rivoluzioni. Certo la causa non risiede nei vapori terrestri, perché mentre essi appaiono più grandi e più piccoli Giove e le vicine stelle fisse si vedono invece immutati. Ed è anche impossibile che si allontanino così tanto dalla Terra nel loro apogeo e tanto le si avvicinino nel loro perigeo da causare un tale cambiamento: una stretta rotazione circolare non può in alcun modo produrre un simile effetto. Dato che non solo la Terra ma anche la Luna è circondata da vapori, possiamo ragionevolmente credere che la stessa cosa avvenga sugli altri pianeti, e quindi accettare che vi sia un involucro più denso del rimanente etere anche attorno a Giove. I Pianeti Medicei, con l’interposizione di questo involucro più denso, all’apogeo sembrano minori, mentre al perigeo maggiori per la mancanza o quantomeno l’attenuazione dell’involucro stesso …”
Non tutto è esatto in questa spiegazione, soprattutto nel richiamo all’atmosfera della Luna. E’ esatto invece il ragionamento che esclude la componente atmosferica terrestre ed il fatto che le orbite dei satelliti medicei devono essere molto piccole attorno a Giove rispetto alla distanza dalla Terra.

Giove-01_08_08

giove-02-05-05-2036UT-rgb-copy

La reale atmosfera di Giove vista oggi con un telescopio di 21 cm di apertura. Le grandi bande equatoriali sono i dettagli più appariscenti del gigante gassoso; se osservate con telescopi di elevata qualità, soprattutto sotto cieli con ottima trasparenza, rilevano una messe di particolari (gli ovali, le bande equatoriali piuttosto movimentate, i festoni e la Grande Macchia Rossa) spesso notevolmente variabili anche su scale temporali relativamente corte.

giove-17-01-2004-203ut-Rgb40-ganymede

Preistorica ripresa acquisita con una banale webcam nell’ormai lontano 2004

giove Celestron 14" @ PGR Flea3.  Damian Peach

L’enorme salto qualitativo ottenuto grazie a ottiche specializzate, nuovi rivelatori, e sofisticate tecniche di elaborazione delle immagini. Celestron 14″ @ PGR Flea3.
Damian Peach

This NASA/ESA Hubble Space Telescope image shows a gorgeous close-up view of the planet Jupiter. Astronomers were using Hubble to monitor changes in Jupiter's immense Great Red Spot (GRS) storm. During the exposures, on 21 April 2014, the shadow of the Jovian moon Ganymede swept across the center of the GRS. Giving the giant planet the uncanny appearance of having a pupil in the center of a 16 000 kilometre wide eye.

This NASA/ESA Hubble Space Telescope image shows a gorgeous close-up view of the planet Jupiter.
Astronomers were using Hubble to monitor changes in Jupiter’s immense Great Red Spot (GRS) storm. During the exposures, on 21 April 2014, the shadow of the Jovian moon Ganymede swept across the center of the GRS. Giving the giant planet the uncanny appearance of having a pupil in the center of a 16 000 kilometre wide eye.

This "family portrait," a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter's four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto. The Great Red Spot, a storm in Jupiter's atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction. Europa, the smallest of the four moons, is about the size of Earth's moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA's Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA's Voyager spacecraft.

This “family portrait,” a composite of the Jovian system, includes the edge of Jupiter with its Great Red Spot, and Jupiter’s four largest moons, known as the Galilean satellites. From top to bottom, the moons shown are Io, Europa, Ganymede and Callisto. The Great Red Spot, a storm in Jupiter’s atmosphere, is at least 300 years old. Winds blow counterclockwise around the Great Red Spot at about 400 kilometers per hour (250 miles per hour). The storm is larger than one Earth diameter from north to south, and more than two Earth diameters from east to west. In this oblique view, the Great Red Spot appears longer in the north-south direction. Europa, the smallest of the four moons, is about the size of Earth’s moon, while Ganymede is the largest moon in the solar system. North is at the top of this composite picture in which the massive planet and its largest satellites have all been scaled to a common factor of 15 kilometers (9 miles) per picture element. The Solid State Imaging (CCD) system aboard NASA’s Galileo spacecraft obtained the Jupiter, Io and Ganymede images in June 1996, while the Europa images were obtained in September 1996. Because Galileo focuses on high resolution imaging of regional areas on Callisto rather than global coverage, the portrait of Callisto is from the 1979 flyby of NASA’s Voyager spacecraft.

Conclusioni
Quale miglior regalo si poteva fare al proprio “mecenate”? Sicuramente Galileo non riusciva ancora a rendersi conto della po rtata immensa delle sue scoperte. Aveva definitivamente distrutto la visione stereotipata, immutabile e rigida dell’Universo ed aveva offerto al suo Signore ed alla conoscenza dell’uomo un bene inimmaginabile.
Le foto del presente capitolo sono state tutte eseguite da uno degli autori  attraverso strumentazione amatoriale. Eppure le immagini, sia per la moderna tecnologia sia per l’utilizzo di raffinate elaborazioni al computer, sono enormemente più nitide e precise delle lontane osservazioni galileiane. Ma cosa avrebbe saputo fare Galileo se fosse nato al giorno d’oggi?

Domenico Licchelli, Vincenzo Zappalà

Per saperne di più:

Il diagramma delle meraviglie (tratto da Il Gioco delle Stelle) – Vincenzo Zappalà

Copertina Gioco delle stelle..Se fossi vissuto qualche secolo fa, ciò che sto per dirvi mi avrebbe fatto sicuramente finire sul rogo. Oggi, invece, alcune considerazioni scientifiche poco “ortodosse” che sto per esprimere getterebbero una luce scarsamente professionale sulla mia persona. Sarei comunque “distrutto”. In fondo, però, mi sento scusato, dato che faccio tutto ciò solo e soltanto per dimostrare come il diagramma HR, mai abbastanza celebrato, sia la vera pietra di Rosetta dell’astrofisica, lo strumento più importante per la comprensione degli scopi e delle fasi creative ed evolutive delle stelle e, quindi, dell’intero Universo. Per comprendere meglio la straordinaria scoperta dei due scienziati (Ejnar Hertzsprung e Henry Norris Russell) e l’immensa ricaduta sull’evoluzione dell’intero Universo, è però necessario partire un po’ da lontano e risolvere (o tentare di risolvere) alcuni problemi ben più assillanti e misteriosi. In altre parole, dobbiamo sistemare alcuni concetti fondamentali………

…Siamo perciò giunti alla terza parte, quella decisiva, per la comprensione totale del più bel gioco dell’Universo…Finalmente abbiamo in mano le misure (più o meno accurate e più o meno numerose) delle famose quattro grandezze fondamentali. E’ ora di cercare di metterle a confronto, sfruttando anche le relazioni che ho, di tanto in tanto, mostrato.

Prima di tutto, fatemi fare una considerazione abbastanza personale, ma credo condivisibile. Molti potrebbero dire: “Non ci voleva una grande fantasia o intelligenza a cercare di legare tra loro i parametri stellari che cominciavano a essere disponibili attraverso osservazioni sempre più precise e numerose”. A posteriori hanno forse ragione, ma proviamo a metterci nei panni degli scienziati di fine ottocento. Grandi passi avanti per ciò che era la meccanica celeste (teoria facilmente verificabile nel sistema solare) e per la fisica teorica (anche se non vi erano i “mostri” del CERN). Per le stelle, invece (e ancor peggio per quelle strane nebulosità che si intravvedevano tra loro) si era proprio alla preistoria. Sì, c’era il Sole che poteva far capire qualcosa, ma ancora niente o quasi si sapeva degli infiniti puntini luminosi che brillavano nel cielo.

Proprio in quel periodo così importante per l’astrofisica sperimentale si mettono a punto due tecniche osservative importantissime e decisive: la fotografia e la spettroscopia. La prima evolverà poi nei sistemi di ricezione odierni ben più potenti, ma allora era l’unico metodo per entrare nelle profondità del cielo e poter raccogliere luce indipendentemente dalle caratteristiche del limitato occhio umano. Più si esponeva una lastra e più deboli e numerose erano le sorgenti luminose che si mostravano su quel pezzo di vetro cosparso di gelatina.

Ancora più importante era la spettroscopia, anche se molto rozza e primitiva. Essa permetteva di sezionare nei vari “colori” la luce bianca che giungeva a terra, capirne la somiglianza con il corpo nero e tutto ciò che abbiamo già raccontato.

Decisivo, però, è stato il passo che le osservazioni sempre più accurate potevano finalmente permettere. Già si sapeva come poter fare a calcolare la distanza di una stella relativamente vicina, ma restava teoria pura. A fine ottocento arrivarono i primi risultati seri e precisi. Pensate che prima di quel momento molti scienziati pensavano che le stelle avessero più o meno tutte la stessa luminosità (d’altra parte si conosceva solo il Sole) e che l’unico fatto che le faceva apparire di diversa luminosità era la distanza. Un bell’alibi anche per le teorie sulla fisica stellare: bastava studiare il Sole e poi determinare le distanze. Il cielo era pieno di tanti soli sparsi ovunque, tutto lì.

Questo fatto è molto importante per capire la scarsa conoscenza sperimentale e teorica delle stelle a fine ottocento: erano tutte uguali e forse la loro vita relativamente semplice. Ad esempio, si pensava che Sirio fosse la stella più vicina a noi, essendo la più luminosa.

Sirio e la costellazione cane maggiore

La costellazione del Cane Maggiore impreziosita dalla brillante Sirio

Quando si scoprì che la stella di Barnard era decisamente più vicina anche se appariva molto debole (25000 volte meno luminosa di Sirio), le cose cambiarono completamente. Si era, però, già nel 1916 o giù di lì. Sarebbe stato facile in quel momento cominciare a riguardare le proprietà osservative delle stelle e a pensarci sopra. Ma Russel e Hertzsprung lo avevano già fatto e avevano già indirizzato le ricerche per il futuro.

Ecco la loro grandezza e genialità: aver pensato a qualcosa prima che diventasse chiaro e facile. O, meglio, aver aperto gli occhi per la pianificazione delle ricerche successive che magari avrebbero preso altre direzioni e avrebbero ritardato la scoperta dell’evoluzione stellare.

Permettetemi un esempio in un campo completamente diverso, ma molto calzante (almeno per me). Oggi vi sono moltissimi pittori, anche di scarso valore artistico, capaci di disegnare un paesaggio, una serie di persone, uno scorcio cittadino, seguendo le regole della prospettiva. E’ una tecnica di dominio pubblico che necessita solo un po’ di concentrazione e di studio. Applicarla, invece, nei dipinti del primo quattrocento voleva dire essere dei geni assoluti e dei rivoluzionari totali. Masaccio, Piero della Francesca e i loro seguaci e coetanei hanno aperto una nuova strada nell’arte. Senza di loro forse non conosceremmo né Michelangelo né Leonardo. Chissà… qualcuno ci sarebbe senz’altro arrivato in seguito? Sicuramente sì, ma quando? Di certo la storia dell’arte sarebbe stata diversa. E così anche l’astrofisica senza Russel e Hertzsprung.

Intorno al 1910 si cominciò a pensare che le stelle si dividessero in due grandi categorie: quelle luminose, blu e calde e quelle deboli, rosse e fredde. Nessuno infatti aveva ancora trovato una stella debole e calda. Qualsiasi stella poco luminosa veniva, quindi, giudicata sicuramente anche fredda.

L’astronomo statunitense Henry Norris Russel decise di studiare più a fondo la questione e vedere come si comportavano le stelle con distanza conosciuta (e quindi di magnitudine assoluta nota). L’unico modo era di avere il maggior numero di informazioni sul colore e la temperatura degli astri. In poche parole, sul loro tipo spettrale. Russel si limitò, però alle stelle vicine e luminose, le uniche che permettevano allora una misura accurata della distanza. Era inutile ottenere spettri di oggetti lontani e/o deboli di cui non era possibile ricavare la lontananza. Una scelta pratica e inconfutabile.

Chiese, allora, a Edward Pickering di cercare, nel suo archivio, gli spettri di stelle aventi tali caratteristiche. In particolare chiese quello di una stella veramente speciale che aveva creato non poca confusione. Essa era la debole compagna di Omicron2 Eridani, chiamata appunto Omicron2 Eridani B. Insieme all’assistente Willamina Fleming, Pickering trovò quello che Russel cercava. La stella era estremamente debole ma di tipo spettrale A. Impossibile! Il tipo spettrale A era riservato a stelle caldissime, rappresentanti meno del 5% delle stelle di spettro conosciuto. La temperatura doveva aggirarsi intorno ai 9000 gradi, nettamente superiore a quella del Sole.

Come già sappiamo la luminosità varia con la quarta potenza della temperatura, il che vuole dire che se fosse stata grande come il Sole avrebbe dovuto essere incredibilmente brillante. Per poter ricevere un flusso luminoso intrinsecamente così potente, ma all’apparenza debolissimo, la luce doveva essere emessa da una superficie piccolissima (vedete come sono comode le formule che legano temperatura, luminosità e raggio? Niente da fare: la formula matematica permette di semplificare e di condensare discorsi lunghissimi e approssimativi. E’ proprio il linguaggio della fisica). La conclusione era una sola: Omicron2 Eridani B doveva essere una stella di esigue dimensioni, probabilmente non più grande della Terra!

Russel, Pickering e Fleming si erano imbattuti nella prima nana bianca e nella eccezionalità delle sue caratteristiche fisiche. In realtà il color “bianco” valeva solo per quella stella in particolare, dato che poi se ne trovarono di tutti i colori (cambiando la temperatura), dall’azzurro al giallo e al rosso, ma il nome rimase lo stesso per sempre.

L’interesse di Russel per i legami esistenti tra magnitudine assoluta, colore e temperatura divenne ancora più spasmodico e l’astronomo decise di mettere su un grafico le caratteristiche delle stelle di cui aveva chiesto lo spettro. In ordinata inserì la magnitudine assoluta (indipendente dalla distanza) e in ascissa il tipo spettrale o -alternativamente- l’indice di colore (anch’esso indipendente dalla distanza) che, come sappiamo (e sapevano), è legato alla temperatura effettiva del corpo nero corrispondente.

Russell, Nature, 93, 252 (1914)

Il diagramma originale di Russel, pubblicato nel 1913. Si noti la prima piccola, isolata, caldissima, nana bianca – Nature, 93, 252 (1914)

Russel pubblicò il suo grafico nel 1913. Esso divenne immediatamente popolare e considerato il modo migliore per rappresentare in un sol colpo l’intera popolazione stellare. Il nome rimase “diagramma di Russel” finchè non si venne a conoscenza che già nel 1911 l’astronomo danese Ejnar Hertzsprung aveva pubblicato un grafico analogo su una sconosciuta rivista che nessuno aveva praticamente letto. Con grande onestà scientifica (a volte gli studiosi sanno dare piccole lezioni di umiltà e di correttezza) il nome del diagramma divenne di Hertzsprung-Russel, con il nome del danese per primo. Ormai si parla di questo metodo di rappresentazione come del diagramma HR.

Non tutto lo spazio era occupato e vi era una chiara linea di tendenza principale. Le stelle blu, calde e luminose, si piazzavano in alto a sinistra e le rosse, fredde e deboli, in basso a destra (come già ipotizzato e previsto). Tuttavia, vi era un altro ramo composto di stelle rosse e fredde: oggetti che invece di diminuire la propria magnitudine la aumentavano. Infine, isolata e quasi assurda, Omicron2 Eridani B, calda e di irrisoria luminosità.

Il diagramma di Russel si riferiva solo a stelle che si trovavano entro i 30 anni luce dalla Terra.

h-r-diagram

Diagramma HR schematico moderno

A questo punto era chiaro che la popolazione stellare non seguiva soltanto un’unica legge magnitudine-temperatura, ma era composta da oggetti che si staccavano dal trend normale. Era necessario iniziare a studiare gruppi di oggetti particolari, per vedere se la situazione sarebbe stata sempre la stessa oppure sarebbe cambiata.

Un primo gruppo da prendere in considerazione era quello delle Pleiadi, (M45) nella costellazione del Toro.

Three-colour image made from plates taken at with the UK Schmidt TelescopeB8960, IIa-O/GG 385; V8826, IIa-D/GG 495; R8935, 098-04/RG 630.  B:G:R  30:30:40 min exposure

Three-colour image of M45 made from plates taken at with the UK Schmidt TelescopeB8960, IIa-O/GG 385; V8826, IIa-D/GG 495; R8935, 098-04/RG 630. B:G:R 30:30:40 min exposure

L’ammasso delle Pleiadi rappresentato nel diagramma HR.

L’ammasso delle Pleiadi rappresentato nel diagramma HR

Tutte le stelle sono quasi perfettamente piazzate lungo la linea che parte da quelle calde, blu e luminose e termina a quelle fredde, rosse e deboli. Non vi sono nane bianche e nemmeno stelle fredde, rosse e luminose.

Un secondo è l’ammasso globulare M3, nella costellazione dei Cani da Caccia.

ammasso globulare m3 noao

Globular Cluster M3 from WIYN – Credit & Copyright: S. Kafka & K. Honeycutt (Indiana University), WIYN, NOAO, NSF

hr diagram ammasso globulare m3

L’ammasso globulare M3 rappresentato nel diagramma HR. The main sequence turn off has an apparent value of r = 19.25 – (c) Galactic Discovery Project.

In questo diagramma, trascurando per un momento la striscia quasi orizzontale, sembra che esista solo la parte inferiore della diagonale delle Pleiadi, quella degli oggetti freddi e deboli. Al posto di quella superiore (stelle calde e luminose) appare il ramo di destra degli astri freddi e brillanti.

Un piccolo chiarimento. La scelta di due gruppi così speciali è legata essenzialmente all’alto numero di oggetti che contengono e alla più che probabile vicinanza delle stelle che li compongono. Anche se nelle due figure precedenti è inserita la magnitudine assoluta, per gruppi di stelle poste tutte alla stessa distanza si può usare la magnitudine apparente. Un grosso vantaggio indubbiamente sfruttato in tempi in cui la determinazione della distanza non era un gioco da bambini.

Le tre figure precedenti erano un bell’enigma per gli astronomi dell’inizio del XX secolo. Una possibilità era che le tre popolazioni fossero gruppi di stelle intrinsecamente differenti. Quella più seguita, però, implicava la ricerca di un unico modello per i tre diagrammi. D’altra parte la zona in basso a destra era comune alle tre popolazioni.

Tra i molti studiosi, si distinse Allan Sandage, che propose un “movimento” delle stelle lungo il diagramma HR in funzione della loro età. Le stelle nascono come le Pleiadi, lungo la diagonale principale. All’avanzare dell’età iniziano a lasciarla spostandosi sulla destra e le più luminose sono le prime a muoversi. Questa evoluzione si vede chiaramente nel diagramma dell’ammasso globulare. Un po’ alla volta anche gli astri più deboli lasciano la diagonale. Ovviamente il primo diagramma di Russel conteneva stelle di tutte le età e quindi era un mix di popolazioni diverse. Insomma le differenze nei tre diagrammi erano solo dovute all’età delle stelle.

Era nata l’astrofisica stellare.

3.2 La grandezza delle bolle

Prima di andare avanti nel nostro gioco, parliamo un po’ del raggio. Vi sarete accorti che non ho detto quasi niente sulla determinazione diretta di questo parametro. In realtà i problemi sono essenzialmente due: è difficile misurarlo e non è facile definire un limite esterno per un oggetto gassoso che non ha una vera e propria superficie come i pianeti e che tutto fa meno che stare tranquillo e rilassato.

Potrei dirvi che oggi si riescono a determinare, finalmente, alcuni raggi di stelle giganti per mezzo dell’interferometria e che altre misure si ottenevano già da tempo con le binarie a eclissi. Tuttavia, il raggio diventa veramente importante solo nei momenti critici delle stelle, ossia in quelli che nei primi diagrammi avevano creato sorpresa e poi aperto le porte all’evoluzione stellare.

Sto parlando, ovviamente, del ramo di destra a bassa temperatura e luminosità elevata e delle nane bianche, le prime anomalie incontrate nel diagramma appena nato. Ebbene, chi le causa e le fa notare visivamente è soprattutto il raggio. E’ lui che non segue più le regole e mette in evidenza i percorsi anomali.

Prendiamo, ad esempio, il ramo di destra. Abbiamo già visto che la temperatura scende drasticamente, ma la superficie che emette luce è talmente grande (il raggio è diventato enorme) che la luminosità supera di 100 volte quella emessa quando la temperatura era più alta. In altre parole, la luminosità cresce se aumentiamo la superficie in grado di distribuirla verso l’esterno. Faccio un paragone un po’ azzardato: un vagone della metropolitana è stracolmo di persone, ma la porta di uscita è una sola. Vedrò saltar fuori molta gente, per molto tempo, ma non avrò un flusso mostruoso di ritardatari che corrono. Pochi alla volta, insomma. Se, invece aumento il numero delle porte, immediatamente tutti gli occupanti saltano fuori e danno l’idea di una folla sterminata, maggiore di quella precedente.

Prima, tutto seguiva le regole della calma e dell’ordine (equilibrio idrostatico quasi perfetto); poi l’equilibrio si è rotto e si è dovuta cercare una nuova soluzione. Continuando in questo paragone (che vi prego di prendere con le dovute molle), se le porte si rompono in tutto il treno e ne resta una sola per l’intero convoglio, vedremo uscire pochissime persone anche se per un periodo lunghissimo. Questo assomiglia al caso delle nane bianche. La temperatura è altissima, ma il raggio è talmente piccolo che la quantità di luce emessa non può essere che estremamente modesta. Insomma, variare il raggio è come aprire un numero diverso di porte in un convoglio stracolmo di persone.

Se, poi, il numero di persone (ossia la massa della stella) comincia anch’essa a variare le cose si complicano. Per esempio, nel caso delle nane bianche, molti viaggiatori se ne sono andati da un’uscita posteriore non visibile. In altre parole, le stelle hanno perso anche una notevole quantità di massa.

Scusate questa digressione un po’ fantasiosa, ma è estremamente importante cominciare, con il piede giusto, un’analisi accurata del diagramma HR e di quelle mille cose, a prima vista nascoste, che sa raccontarci direttamente o indirettamente e che spesso vengono tralasciate nei libri. Il discorso che ho appena fatto può essere sintetizzato da un’unica formula che già ben conoscete e che riporto nuovamente:

L = 4 πσT4R2

Con quel famoso linguaggio che a tanti non piace, essa dice la stessa cosa delle mie lunghe e strampalate parole ma in modo perfettamente quantitativo. Se voglio lasciare la luminosità costante o al limite farla anche aumentare un po’ (ramo destro anomalo del diagramma HR) mentre la temperatura sta miseramente scendendo, ho un solo modo per agire: aprire le porte, ossia aumentare il raggio. Dato che la temperatura viaggia con la quarta potenza devo anche aumentarlo di molto, visto che lui va solo al quadrato!

VY Canis Majoris

A size comparison between the Sun and UY Canis Majoris. (c) HeNRyKus

…………………………………

Vincenzo Zappalà – 2014

Per saperne di più:

Il Gioco delle Stelle

La voce del mare, ovvero io e le balene – Vincenzo Zappalà

La terra e il mare: due entità fisiche percepite in modo nettamente diverso dalla maggior parte degli esseri umani. La prima è qualcosa di tattile, di investigabile, di manipolabile. Ha anch’essa lati oscuri, misteriosi, a volte terribili e a volte affascinanti, ma è lì a portata di mano (e di piede). In altre parole, è il nostro mondo, parla la nostra lingua.

Il mare no. Esso non sembra voler comunicare con noi. Sia che si presenti con un confine distensivo e tranquillo, sia che si mostri con la rabbia delle sue onde, esso è un “diverso”, sempre impenetrabile e incomprensibile. Sì, possiamo anche immergerci e vedere cosa contiene. Possiamo, anche studiarlo attraverso svariate tecnologie, ma  rimane qualcosa di estraneo, di alieno. Non esistono parole tra di noi o -quanto meno- parliamo due linguaggi troppo distanti tra loro. Questa è la prima impressione che mi colpisce quando mi affaccio da un’altura verso il mare. Una gran voglia di conoscere e di interagire, ma un senso di frustrazione nel non esserne capace.

Almeno, queste erano le mie sensazioni fino al recente viaggio alle Hawaii.  Adesso tutto è cambiato. La voce del mare è risultata improvvisamente udibile e comprensibile in tutte le sue sfumature. Vi racconto come è successo.

Isola di Maui, temperatura del mare estremamente piacevole, profondità non troppo elevata. Un luogo perfetto perché i giganti del mare possano mettere alla luce i loro piccoli. Vale la pena percorrere migliaia di chilometri dall’Alaska per approdare in una “nursery” di livello eccezionale. Come dargli torto? Anche noi cerchiamo di fare lo stesso per i nostri neonati.

Astronaut photograph ISS038-E-32755 was acquired on January 18, 2014 is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center

Maui Island – Astronaut photograph ISS038-E-32755 was acquired on January 18, 2014 is provided by the ISS Crew Earth Observations experiment and Image Science & Analysis Laboratory, Johnson Space Center

I giganti del mare, le balene, enormi creature che potrebbero comunque nascondersi tranquillamente al di sotto di quel confine invalicabile di cui dicevo prima. Basta un attimo per respirare e tornare nel mondo dell’incognito e del mistero. E invece non lo fanno. Le balene vogliono comunicare con la terra e usano tutti i sistemi di cui sono capaci.  Per loro quel confine è superabile e leggero. In fondo, basterebbe immergere un dispositivo acustico per sentire il loro canto dolce e variegato, che ci racconta di avventure, di speranze e di drammi. Ma non lo capiremmo comunque e il loro mondo resterebbe nascosto e inviolabile. Hanno, perciò, scelto di apparire direttamente agli abitanti della terra e di farlo con una costanza e una passione che noi non riusciremmo mai a possedere.

Mi sono fermato per pochi minuti su un promontorio a guardare quella distesa liquida che sentivo ancora lontana e insuperabile. Bella, limpida, colorata, ma invalicabile. Improvvisamente, il mare ha parlato e si è fatto capire. Uno sbuffo altissimo, poi un altro. Una coda che si erge dritta contro il cielo blu e che percuote le onde. Un gesto ripetuto con accanimento. “Allora… mi stai sentendo? Io sono il mare e cerco di parlarti!”. E’ un caso, un momento irripetibile che non fa storia. Il confine torna alla sua anormale normalità. No, ecco un altro sbuffo e questa volta un dorso enorme e arcuato sembra uscire ed entrare al rallentatore. Non è solo, però. Insieme a quello più grande ve ne è uno più piccolo che cerca di seguire gli insegnamenti. Sì, è un cucciolo che sta imparando dalla mamma. E continuano a volteggiare per lunghi minuti.

La coda dell’occhio, però, nota altri sbuffi a destra e poi a sinistra. Alcuni lontani, altri vicinissimi. La testa mi sta girando. No, non posso sbagliarmi: il mare mi sta parlando attraverso i suoi giganti. Comincio a capire e mi accorgo che sto sorridendo. Poi entrano in scena i maschi, un po’ prepotenti e sempre desiderosi di mettersi in mostra anche se il tempo degli amori è ancora lontano. Forse vogliono insegnare ai piccoli qualcosa che non siano solo le tecniche base di movimento e di sopravvivenza. Ogni tanto fanno uscire solo una pinna, altissima come una torre. A volte solo l’enorme testa che sembra scrutare curiosa la superficie del mare o forse la terra lontana. Non posso sbagliarmi: sto assistendo a uno spettacolo che il mare mi sta regalando attraverso i suoi attori più importanti e prestigiosi.

HIHW_2001

Penso con disgusto e con compassione agli spettacoli artefatti che si vedono negli acquari. Com’è stupido l’uomo e come la sua ignoranza riesce facilmente a trasformarsi in cattiveria. Scaccio quel pensiero e torno agli amici del mare.

HIHW_0013

Comincio a riconoscere i vari ruoli e le varie scene che hanno preparato. Mi accorgo che spesso dove penso di vedere una sola creatura ve ne sono invece tre, quattro o anche più. Sembrano scandire le loro parti in modo da regalarmi un colloquio continuo. Poi un primo colpo di fortuna. Una mamma (è sicuramente lei) spinge fuori dall’acqua il suo erede e lo lascia ricadere in modo abbastanza rovinoso. Deve imparare anche a saltare. Qualsiasi dubbio mi lascia. Il salto non è legato a nessun bisogno fisiologico delle balene (dicono di sì, ma sono solo le solite invenzioni umane costruite per sentirci superiori). E’ un gesto di gioia, di allegria, di partecipazione e di comunicazione. Se viene insegnato ai piccoli, vuol dire che deve far parte del repertorio degli adulti. Ne ho sentito parlare, ne ho visto anche delle foto. Ma tutt’altra cosa è assistervi direttamente in un colloquio diretto, a tu per tu. Scruto il mare che ormai mi sta chiamando da molte direzioni. Trascuro molti messaggi aspettando l’urlo liberatorio. Finalmente arriva e sento una stretta nel petto. Incredibile! Una creatura di venti metri di lunghezza esce completamente dall’acqua e compie un salto arcuato e nettissimo. Sta facendo il “ponte”, l’esercizio più entusiasmante e sicuramente “inutile” da un punto di vista logico e fisico.

Non posso che considerarlo come un grido lanciato verso di me e mi accorgo che ho risposto con un “Evviva” o -forse – con un “Bravo”. Sembra che mi abbia sentito e lo ripete tre, quattro, cinque volte in una sequenza che lascia di sasso. E ogni volta, nella ricaduta, l’urto con l’acqua è un rumore, anzi un suono, che non ha confini. Guardo l’orologio. E’ passata meno di mezz’ora e sto parlando con il mare. Tra di noi tutto è cambiato, grazie alle balene e alla loro rappresentazione sempre uguale e sempre diversa. Potrò mai ringraziarle abbastanza?

P.S.: aggiungo qualche foto personale, di bassa tecnologia. Non mi avvilisco, però, più di tanto,  dato che non si fanno foto ai suoni e alle chiacchierate personali e intime. Se ce ne fosse bisogno, servono solo a ricordare, a stuzzicare la memoria e a rivivere momenti magici.

Vincenzo Zappalà – 2014

zappa-hawai

More….

HIHW_0029

HIHW_0750 HIHW_0194  HIHW_1840 HIHW_2092 HIHW_2723 HIHW_4080 HIHW_0020 humpbacks4_300 HIHW_0012  HIHW_0003 HIHW_0040 HIHW_0041 HIHW_0045