Colori e Temperature delle Stelle – Domenico Licchelli e Francesco Strafella



Entrando in una stanza scarsamente illuminata ognuno di noi si accorge di una istantanea perdita di sensibilità visiva. La spiegazione di questo fenomeno sta nella struttura dell’occhio umano. Quando la radiazione luminosa arriva sulla retina stimola le terminazioni nervose in essa contenute: i CONI e BASTONCELLI.
I Coni, i quali sono maggiormente concentrati in una zona centrale della retina (detta, Fovea), operano solo in presenza di alti livelli d’illuminazione. Essi inoltre consentono di discriminare i colori e di avere una buona risoluzione dei dettagli.
I Bastoncelli sono la stragrande maggioranza di recettori luminosi presenti nella retina, circa 120 milioni contro i 7 dei coni, e si trovano soprattutto in periferia. Essi operano in condizioni di bassa luminosità e sono insensibili ai colori; per questo motivo nel caso in cui si è in ambiente scotopico (scarsamente illuminato) l’occhio umano non percepisce i colori ma solo sfumature di grigio.
Da questo si capisce che in visione notturna il nostro sistema visivo può fare affidamento solo sui bastoncelli. Questi ultimi per un completo adattamento a condizioni di bassa illuminazione necessitano in genere di un periodo compreso tra i 45 e i 60 minuti.
Trascorso questo intervallo, con il sistema completamente adattato si può notare che:
• La visibilità degli oggetti è maggiore nella zona centrale che in quella periferica del campo visivo questo perché la minima distanza angolare per distinguere separati due oggetti è rappresentata dalla stimolazione di almeno tre campi recettivi. Nella zona centrale della retina i campi recettivi sono formati da un solo fotorecettore, perciò stimolando due coni e lasciando un terzo non stimolato si potrebbe distinguere due oggetti separati. In caso di visione notturna la massima sensibilità si ha nei campi recettivi perifèrici, che però sono molto grandi (formati anche da milioni di bastoncelli) quindi il potere risolutivo è notevolmente più basso
• I colori sono percepiti solo come diverse tonalità di grigio in quanto i bastoncelli (fotorecettori deputati alla visione notturna ) sono insensibili ai colori. Quando l’occhio si è adattato all’oscurità , la sensibilità massima si sposta verso lunghezze d’onda più corte. Mentre i 555 nanometri della visione fotopica corrispondono al colore giallo-verde, i 510 della visione scotopica corrispondono al blu-verde. Al diminuire della luminosità generale dell’ambiente l’occhio perde la sensibilità per le tonalità del rosso e però distingue ancora bene i verdi, gli azzurri e i blu. Al calare delle tenebre , secondo il tipico comportamento dell’occhio umano chiamato “effetto Purkinje”, il rosso appare nero, mentre il verde mantiene ancora la sua cromaticità.
La sensibilità dell’occhio umano in visione notturna è influenzata da diversi fattori quali:
• Età: in genere la visione notturna dei giovani è più acuta di quella degli anziani
• Dieta: una alimentazione ricca di vitamina A migliora la visione crepuscolare, in quanto si comporta da enzima nella produzione di rodopsina.
• Condizioni fisiche: l’adattamento è favorito da buone condizioni di salute generale e in particolare dallo stato di salute dell’occhio
• Ereditarietà: un singolo gene può trasmettere una buona o cattiva capacità d’adattamento

Come si traduce tutto ciò nell’osservazione delle stelle? Ad occhio nudo si riesce a distinguere abbastanza bene il colore di pochissime stelle, le più luminose e generalmente di colore rosso, arancio o giallo. Quelle blu le percepiamo come bianche con qualche sfumatura sull’azzurro. In realtà molto dipende dalla trasparenza del cielo, dal tasso di umidità e dalla presenza di polveri in atmosfera. Quest’ultima componente, in particolare, tende a diventare dominante sotto cieli cittadini e/o vicini ad impianti industriali. In questo caso si assiste ad un generale arrossamento, come avviene per esempio col sole al tramonto.
Passando all’osservazione con telescopi più o meno potenti, riusciamo ad apprezzare meglio i colori ma subentrano alcuni effetti, ottici e di elaborazione del cervello, che possono fuorviare. Se lo strumento non è perfettamente apocromatico (dall’ottica principale agli oculari), il colore è fortemente influenzato dallo spettro secondario, generalmente blu-viola che rende difficile valutare il reale colore della stella. Osservando stelle doppie strette, a tutto ciò si aggiunge un eccessivo “zelo” del cervello che tende a farci vedere la compagna, solitamente un po’ più debole, del colore complementare, anche se per esempio la stella è in realtà bianca (principale gialla, secondaria blu, oppure rossa-verdastra etc.). Come si fa quindi a capire il vero colore della stella?

Breve digressione sui colori dell’arcobaleno

Molte informazioni sulla natura di una sorgente luminosa sono codificate nel cosiddetto “spettro” della luce che, nel caso del Sole, possiamo vedere anche ad occhio nudo quando osserviamo il fenomeno dell’arcobaleno che dimostra in maniera evidente che la luce del Sole, che a noi appare di un unico colore bianco, nelle particolari condizioni che si verificano dopo un temporale, quando ci sono ancora goccioline d’acqua in sospensione in atmosfera ed il Sole è basso, si può scomporre nelle sue componenti che si mostrano come una sequenza di archi contigui proiettati in cielo con colori ed intensità diversi.

Genesi dell’arcobaleno – Cortesia Livio Ruggiero

Alaska. Denali NP. Alaska Range. Rainbow above Muldrow Glacier.

Un fenomeno simile lo possiamo osservare anche se facciamo passare la luce di una lampada ad incandescenza attraverso un prisma: dopo l’attraversamento del prisma la luce bianca, inizialmente collimata in un sottile fascio, uscirà scomposta nelle sue componenti in direzioni diverse e con colori diversi. Un modo per capire cosa succede è di pensare che la nostra lampada in realtà emette una luce che è una mescolanza di radiazioni di vari colori. Nel suo passaggio attraverso il prisma le differenze tra vari colori si evidenziano perché la radiazione, entrando nel prisma, viene rifratta (come fosse “piegata”) ad angoli diversi a seconda della lunghezza d’onda, ovvero a seconda del colore. All’uscita dal prisma si noterà che la radiazione blu viene “piegata” più della rossa in modo che i vari colori emergano ad angoli diversi formando così una specie di arcobaleno.

Rifrazione di un fascio di luce bianca con un prisma

Notiamo ora che abbiamo introdotto il termine “lunghezza d’onda” in associazione al “colore della luce” e quindi abbiamo implicitamente adottato l’idea che la nostra percezione del colore sia legata alla lunghezza d’onda della radiazione o, meglio, alla combinazione di radiazioni di diversa lunghezza d’onda che mescolandosi compongono la luce emessa da una sorgente luminosa.

Siamo più pronti ora ad usare l’espressione “spettro della luce” per indicare la sequenza di intensità e di lunghezze d’onda (e quindi di colori) emesse da una data sorgente luminosa, tenendo presente che le lunghezze d’onda delle radiazioni che producono un colore blu sono tipicamente più piccole di quelle che invece producono il rosso.

Oltre che a scaldare e fornire energia, quale altra informazione porta con sé la luce del Sole?

Per rispondere a questa domanda ci può guidare un’analogia con un pezzo di ferro scaldato da un fabbro: osserviamo che all’aumentare della temperatura il colore del metallo ci appare prima nero, poi rosso, giallo ed infine, alla temperatura più alta, diventa bianco. Il fabbro può usare allora il colore come un termometro per valutare la temperatura del metallo, cosa che effettivamente fa.

Possiamo ripetere questa esperienza in casa osservando come cambia il colore del filamento di una lampada a luminosità variabile. Ci rendiamo conto facilmente che la luce è minima quando il filamento è più freddo e rosso, mentre aumenta man mano che il filamento si riscalda e tende al colore bianco.

Date queste osservazioni possiamo fare due considerazioni:

  1. un corpo emette più radiazione quando è caldo rispetto a quando è freddo;

  1. un corpo caldo appare più bianco di uno freddo, che invece tende più al rosso.

Siccome le stelle sono corpi caldi che emettono luce con modalità analoghe a quelle del filamento della nostra lampada, useremo le considerazioni fatte poc’anzi per dire che il colore delle stelle può essere usato come indicatore della temperatura di superficie, cioè della regione da cui proviene la luce stellare. Assumendo che le stelle si comportino come corpi neri, il massimo della loro emissione, e quindi il loro colore, è funzione della temperatura (Legge di Wien), così come le righe degli elementi presenti, facilmente individuabili proprio con lo spettroscopio.



Spettri di emissione del corpo nero a diverse temperature. Si nota come al crescere di T il massimo di emissione si sposta verso le lunghezze d’onda inferiori, ossia verso il blu, come previsto dalla Legge di Wien (lambdamax*T = costante)

Come valutare la temperatura misurando il colore

Dalle precedenti osservazioni potremmo già dire che le stelle blu hanno superfici più calde delle stelle rosse, ma per passare all’effettiva valutazione della temperatura delle superfici bisogna fare ancora un passo in più. Per questo abbiamo bisogno di riprendere il concetto di “spettro della radiazione” che abbiamo introdotto a proposito della luce dell’arcobaleno e che misura l’andamento della intensità dell’emissione (la brillanza) al cambiare della lunghezza d’onda (il colore).

Nella figura seguente sono rappresentati gli spettri emessi da una sorgente a tre temperature diverse; si nota che, se misuriamo le intensità a due diverse lunghezze d’onda, troviamo valori differenti al variare della temperatura dello spettro. In altre parole il rapporto delle intensità della luce a due diverse lunghezze d’onda cambia al cambiare della temperatura e quindi è una quantità che può essere utilizzata per ricavare la temperatura quando non possiamo porre un termometro a contatto con la nostra sorgente luminosa ma ne possiamo solo osservare lo spettro.

Grafico esplicativo del concetto di Temperatura di colore. Per chiarire le differenze con la Fig.1 precedente si noti che, per evidenziare meglio il comportamento dello spettro al variare della temperatura, abbiamo usato scale logaritmiche. Inoltre le lunghezze d’onda sono state espresse come frequenze usando la relazione: lunghezza d’onda x frequenza = velocità della luce.

Il gioco è fatto: basandoci sull’esperienza acquisita studiando il comportamento della luce di una piccola sorgente nei nostri laboratori abbiamo individuato un metodo applicabile alla luce in generale, e quindi anche alla luce proveniente dalle stelle. Possiamo quindi dire di poter valutare le temperature delle superfici stellari misurando la brillanza di una stella a due diverse lunghezze d’onda della luce, evitando in questo modo di fare un viaggio fino alla stella per mettere un termometro a contatto con la sua superficie! Le temperature valutate con il metodo appena descritto vengono indicate spesso con il nome di “temperature di colore”.

Operativamente si utilizza la fotometria per misurare l’intensità della luce che passa attraverso diversi filtri. Ciascun filtro consente il passaggio solo di una parte specifica dello spettro della luce, respingendo tutte le altre. Un sistema fotometrico ampiamente utilizzato è chiamato sistema Johnson-Cousin UBVRI. Impiega filtri passa banda: U (“Ultravioletto”), B (“Blu”), V (“Visibile”), R (Rosso) e I (infrarosso); ciascuno seleziona diverse regioni dello spettro elettromagnetico.

Il processo di fotometria UBVRI prevede l’utilizzo di dispositivi sensibili alla luce come i CCD accoppiati ad un telescopio puntato verso una stella di cui si misura l’intensità della luce che passa attraverso ciascuno dei filtri individualmente. Questa procedura, per esempio con i filtri UBV, fornisce tre luminosità o flussi apparenti (quantità di energia per cm2 al secondo) designati da Fu, Fb e Fv. Il rapporto dei flussi Fu/Fb e Fb/Fv è una misura quantitativa del “colore” della stella, e questi rapporti possono essere usati per stabilire una scala di temperatura per le stelle. In generale, quanto più grandi sono i rapporti Fu/Fb e Fb/Fv di una stella, tanto più calda è la sua temperatura superficiale.

Imaged from ESO’s La Silla Observatory, this photograph brilliantly captures the full Orion constellation and arcs of gas and dust weaving through the constellation. Just to the left of the the Hunter’s three-star belt is the bright Orion Nebula, one of the most well known star-forming regions.

Ad esempio, Bellatrix in Orione ha Fb/Fv = 1,22, indicando che è più luminosa attraverso il filtro B che attraverso il filtro V. inoltre il suo rapporto Fu/Fb è 2,22, quindi risulta più luminoso attraverso il filtro U. Ciò indica che la stella deve essere davvero molto calda, poiché la posizione del suo picco spettrale deve trovarsi da qualche parte nella banda spettrale del filtro U, o ad una lunghezza d’onda ancora più corta. La temperatura superficiale di Bellatrix (determinata confrontando il suo spettro con modelli dettagliati che tengono conto delle sue linee di assorbimento) è di circa 25.000 Kelvin.

Possiamo ripetere questa analisi per Betelgeuse. I suoi rapporti Fb/Fv e Fu/Fb sono rispettivamente 0,15 e 0,18, quindi è più luminosa in V e più fioca in U. Quindi, il picco spettrale di Betelgeuse deve trovarsi da qualche parte nella banda spettrale del filtro V, o ad un valore maggiore di lunghezza d’onda. La temperatura superficiale di Betelgeuse è di soli 2.400 Kelvin.

Gli astronomi preferiscono esprimere i colori delle stelle in termini di differenza di magnitudine, piuttosto che di rapporto di flussi. Pertanto, tornando alla blu Bellatrix abbiamo un indice di colore pari a

B – V = -2,5 log (Fb/Fv) = -2,5 log (1,22) = -0,22,

Allo stesso modo, l’indice di colore per la rossa Betelgeuse è

B – V = -2,5 log (Fb/Fv) = -2,5 log (0,18) = 1,85

Gli indici di colore, come la scala delle magnitudini, vanno all’indietro. Le stelle calde e blu hanno valori B-V più piccoli e negativi rispetto alle stelle più fredde e rosse.

Un astronomo può quindi utilizzare gli indici di colore di una stella, dopo aver corretto l’arrossamento e l’estinzione interstellare, per ottenere una temperatura accurata di quella stella.

Il Sole con una temperatura superficiale di 5.800 K ha un indice BV di 0,62.

Domenico Licchelli e Francesco Strafella

Astronomia Siderale, omaggio ad Angelo Secchi – Domenico Licchelli

Copyright © Domenico Licchelli – Progetto Polaris 2014 www.osservatoriofeynman.eu  All right reserved Questo volume rientra nelle iniziative del Progetto Polaris e NON ha carattere commerciale. Qualunque forma di distribuzione deve perciò essere coerente con le modalità e gli obiettivi del progetto riportate nella pagina indicata.

Copyright © Domenico Licchelli – Progetto Polaris 2014
www.osservatoriofeynman.eu
Questo volume rientra nelle iniziative del Progetto Polaris e NON ha carattere commerciale. Qualunque forma di distribuzione deve perciò essere coerente con le modalità e gli obiettivi del progetto riportate nella pagina indicata.

Dalla prefazione del libro:

Nel 1875 Giovanni Virginio Schiaparelli, uno dei grandi astronomi italiani del passato, nella sua opera “Le sfere omocentriche di Eudosso, di Callippo e di Aristotele”, così scriveva: “Nel prender a meditare sui monumenti dell’antico sapere, inspiriamoci, o lettore, a quel rispetto ed a quella venerazione che si devono avere per coloro, che, precedendoci in un’ardua strada, ne hanno a noi aperto ed agevolato il cammino. Con questi sentimenti impressi nell’animo ben ci avverrà d’incontrare osservazioni imperfette e speculazioni lontane dalla verità come oggi è conosciuta; ma non troveremo mai nulla né di assurdo, né di ridicolo, nè di ripugnante alle regole del sano ragionare. Se oggi noi, tardi nipoti di quegli illustri maestri, profittando dei loro errori e delle loro scoperte, e salendo in cima all’edifizio da loro elevato, siamo riusciti ad abbracciare collo sguardo un più vasto orizzonte, stolta superbia nostra sarebbe il credere per questo d’aver noi la vista più lunga e più acuta della loro. Tutto il nostro merito sta nell’esser venuti al mondo più tardi.”
Questo testo vuole essere proprio una dimostrazione del rispetto e della venerazione che abbiamo per coloro che, precedendoci, hanno aperto la strada che oggi ci consente di ottenere risultati straordinari, impensabili fino a pochi decenni fa. Le moderne tecnologie, infatti, permettono l’analisi e lo studio di fenomeni complessi e stupefacenti, un tempo appannaggio esclusivo delle grandi strutture di ricerca, anche in piccoli laboratori didattici. Le immagini e gli spettri inseriti nel testo sono stati acquisiti negli anni nei nostri Osservatori astronomici con strumentazione commerciale o auto-costruita. Con un’adeguata preparazione è perfino possibile contribuire direttamente alla ricerca scientifica operando in Osservatori astronomici privati, come nel nostro caso.
Ancora più importante, a nostro avviso, è la valenza didattica insita nel ripercorrere con mezzi moderni le tappe che hanno portato i nostri predecessori a capire le leggi fondamentali della Fisica e delle Scienze tutte.
In questo volume, il nostro “eroe” è Angelo Secchi, gesuita, astronomo, direttore dell’Osservatorio del Collegio Romano, padre dell’Astrofisica stellare italiana ma non solo. Grazie anche ai suoi studi, la giovane spettroscopia applicata alle stelle divenne la stele di Rosetta che ha permesso poi di decodificare il messaggio nascosto nella luce degli oggetti celesti e di costruire, con cognizione di causa, il modello di Universo così come oggi lo conosciamo. Attraverso le sue parole conosceremo la classificazione in tipi spettrali, i tentativi di interpretazione fisica degli spettri osservati e, soprattutto, diverremo amici di alcune delle stelle più belle ed interessanti del firmamento, ognuna con la sua firma caratteristica ed allo stesso tempo unica così come ce la svelano i nostri strumenti.
Il testo, dopo una presentazione divulgativa dello stato attuale delle conoscenze di base di Fisica stellare, procede alternando le originali osservazioni di Secchi agli spettri moderni. Le corpose citazioni (riportate in corsivo) sono estratte da “Le Stelle: saggio di Astronomia siderale” del 1877, un testo brillante, scritto con uno stile molto divulgativo tale da renderlo, ancora oggi, di gradevolissima lettura, e che racchiude alcune delle conclusioni a cui era giunto Secchi dopo molti anni di intenso lavoro. L’obiettivo non è solo quello di guardare sotto una luce nuova il cielo stellato e la sua bellezza ma anche di acquisire una maggiore consapevolezza del posto che occupiamo nell’Universo attraverso la conoscenza dei suoi costituenti più importanti. E’ anche l’occasione per stimolare la riflessione sugli enormi progressi compiuti dalla scienza astronomica nell’ultimo secolo e un doveroso riconoscimento ai grandi scienziati che con la loro instancabile passione e dedizione li hanno resi possibili………..

Omaggio ad un grande scienziato

L’Astronomia si era sempre esclusivamente occupata fino ad ora della grandezza e distanza degli astri e di alcune poche particolarità fisiche di non molta importanza: il pretendere di conoscere la loro natura materiale e composizione chimica si sarebbe creduto un assurdo; fortunatamente ciò non è più vero, e l’astronomo può analizzare la natura delle materie stellari colla facilità con cui il chimico analizza le sostanze terrestri nel suo laboratorio. Sì grande progresso della scienza è dovuto al piccolo strumento, lo spettroscopio. La luce qual viaggiatrice industriosa è quella che ci reca dalla profondità dello spazio queste preziose notizie…..Il primo che ottenesse uno spettro di stella con vantaggio della scienza fu Fraunhofer. Dopo aver con somma perfezione e delicatezza descritto lo spettro solare, e le numerose sue righe, egli intraprese lo studio di altre luci e tra queste ancor di alcune stelle.”

joseph-von-fraunhofer-sonnenspektrum

Francobollo commemorativo del bicentenario della nascita di Fraunhofer

..Fraunhofer trovò così che la Luna, Venere e Giove avevano spettro identico a quello del Sole, come era da aspettarsi, ma le stelle in generale l’aveano molto diverso..”

Spettro del Sole

Spettro del Sole

Spettro della Luna

Spettro della Luna

venus_m_lisa_2012_03_26_c-s

Spettro di Venere

Spettro della Luna e Giove

Oggi con i nostri rivelatori e le nostre tecniche di visualizzazione ed analisi notiamo che è vero che lo spettro della Luna e di Venere nel visibile è sostanzialmente identico a quello del Sole, essendo il risultato della semplice riflessione della luce solare da parte delle superfici planetarie o atmosferiche. Nel caso di Giove, tuttavia, è evidente che allo spettro solare si sovrappongono della bande sfumate dovute all’Ammoniaca (NH3) ed al Metano (CH4) presenti nella sua atmosfera. Seppur individuate già da Secchi, furono associate correttamente a queste molecole solo nel 1930 da R. Wild e V. Slipher.

In Sirio notò una forte riga nera nel verde e due nell’azzurro; e trovò righe simili in alcune altre stelle; ma il sistema di queste righe, la posizione e la qualità trovati in quelle che esaminò, erano diverse assai da quelle del Sole. Senonché la debolezza delle luci era tanta che rendeva assai difficile l’osservazione.

spettro sirio

α Canis Majoris (Sirio)

spettro α Geminorum (Castore)

α Geminorum (Castore)

Riconobbe in Castore la stessa riga del verde che avea trovata in Sirio e vide lo spettro di Polluce solcato di moltissime righe fine tra le quali riconobbe la riga solare D.

spettro β Geminorum (Polluce)

β Geminorum (Polluce)

Nella Capra riconobbe la D e la B del Sole, in α Orione vide pure queste stesse righe e una moltitudine di altre.”

spettro α Aurigae (Capella, Capra)

α Aurigae (Capella, Capra)

spettro Alpha Orionis (Betelgeuse )

Alpha Orionis (Betelgeuse )

Le osservazioni sempre più raffinate di Fraunhofer se da un lato arricchivano il campionario di righe, dall’altro richiedevano una qualche identificazione ed interpretazione. Ma come procedere? La risposta ce la indica lo stesso Secchi:

“….È nota ai nostri lettori l’importanza degli studi spettrali del Sole, mediante i quali si è giunto a riconoscere la natura chimica delle sostanze che trovansi incandescenti nell’astro: uno studio simile dovevasi pertanto eseguire sulle stelle. Due erano le cose principali da investigare: 1) quali fossero le sostanze costitutive delle loro atmosfere incandescenti; 2) se esse atmosfere erano identiche o no in tutte le stelle…

Il primo studio fu per alcune stelle a meraviglia eseguito dai sigg. Huggins e Miller, i quali parte con osservazioni di confronti diretti degli spettri chimici, parte colla comparazione dello spettro solare, vi provarono definitivamente l’esistenza di varie righe solari e quelle di molte sostanze chimiche. Così in Sirio mostrarono che le righe principali erano dell’Idrogeno, e che probabilmente eravi anche il Sodio e il Magnesio. Le nostre osservazioni ci fecero scoprire la quarta riga dell’Idrogeno in allora ancora ignota ai chimici, e misero fuor di dubbio che esse righe erano molto larghe e sfumate. Da principio il celebre sig. Huggins, credette questo dovuto a difetto del nostro strumento, ma ora ha convenuto ancor esso della verità delle sfumature, donde segue che l’Idrogeno ivi trovasi sotto una pressione considerabile. Dalle nostre prime osservazioni fu pure dimostrata in α Orione la presenza dei metalli, Sodio, Ferro, Magnesio, ecc. e due belle tavole diede il sig. Huggins di questa stella e di Aldebaran da noi estese e aumentate. Noi trovammo che l’Idrogeno in α Orione non mancava, ma le sue righe erano confuse nelle grandi zone scure di cui è fornita questa stella, e che l’indebolimento loro poteva provenire dal dare quella stella uno spettro in parte diretto.

Un confronto accurato fatto dello spettro di Arturo e di Aldebaran, di Polluce e della Capra con quello del Sole mediante il prisma obiettivo, ci mostrò più di 60 righe francamente riconoscibili come coincidenti colle metalliche solari, e quindi l’esistenza in quelle stelle del Sodio, del Calcio, del Ferro. Per questa sostanza sono specialmente notabili le righe del verde che ivi formano una numerosa serie di gruppi identici, che costituiscono una bella persiana. Riducendo lo spettro solare a debole intensità, vedemmo risaltare anche meglio l’identità degli spettri stellari e solari in queste stelle. Ma una cosa caratteristica degli spettri stellari è che moltissime stelle oltre le righe fine metalliche danno zone molto fosche come vedesi in α Orione, in β Pegaso, Omicron Balena ecc.

spettro β Pegasi

β Pegasi

spettro Omicron Ceti (Omicron Balena)

Omicron Ceti (Omicron Balena)

Curiosissime oltremodo si mostrano certune come α Ercole, la 12561 di Lalande, ecc. i cui spettri sono fatti a dirittura a colonnato, o piuttosto come un nastro iridato avvolto con successive pieghe cilindriche.

spettro α Herculis

α Herculis

Il fatto più saliente verificato in queste ricerche è stato questo: che mentre le stelle sono numerosissime, pure i loro spettri si riducono a poche forme ben definite e distinte, che per brevità noi chiamammo Tipi. L’esame delle stelle ci ha occupato per parecchi anni: furono esaminate quasi tutte le principali, e moltissime altre; almeno 4000 in tutto, perché oltre alla stella principale si esaminava tutto il suo contorno….

Ecco pertanto le principali conclusioni. Tutti gli spettri stellari, tranne pochissime eccezioni possono ridursi a 4 Tipi principali che sono descritti nelle due tavole cromolitografiche qui inserite.

fonte: Die Sterne, Grundzuge der Astronomie der Fixsterne (1878). Da notare l'ordine invertito con cui era disegnato lo spettro rispetto alla convenzione moderna.

fonte: Die Sterne, Grundzuge der Astronomie der Fixsterne (1878). Da notare l’ordine invertito con cui era disegnato lo spettro rispetto alla convenzione moderna.

1°. Il primo tipo è quello delle stelle bianche o azzurrognole come Sirio, α Lira, β, γ, β, ε, ζ, η dell’Orsa Maggiore, Castore, Markab, α Ofiuco ecc.. Lo spettro di queste è quasi continuo: soltanto esso è solcato da quattro forti righe nere che sono quelle dell’Idrogeno, ma rovesciate secondo il noto principio spettrale dell’assorbimento. Tutte e quattro queste righe possono vedersi nelle più lucide; nelle più deboli non è ordinariamente visibile che la Hβ, ossia la F del Sole, ma in genere questa è molto larga e dilatata e spesso sfumata agli orli, specialmente in Sirio. Questa sfumatura è indizio di elevatissima temperatura e di forte densità dell’atmosfera idrogenica delle stelle di quest’ordine.

spettro sirio

α Canis Majoris (Sirio)

Vi si vedono anche tracce di altre linee come del Magnesio, del Sodio e alcuna del Ferro, ma esse sono debolissime e richiedono aria squisita. A noi però non è mai riuscito di avere queste righe secondarie costantemente nette e precise come in altre stelle di cui facemmo i disegni.

spettro alpha Lyrae (Vega)

α Lyrae (Vega)

In Sirio e in Vega talora esse sono ben distinte, ma per lo più sono appena discernibili anche ad aria ottima; quindi ne segue che queste loro atmosfere sono certamente alquanto variabili. Le figure dello spettro di questa classe che circolano nei libri di spettroscopia carichi di numerose e grosse righe nere, per noi sono assolutamente erronee o almeno esagerate: e sì che non abbiamo risparmiato mezzi di ricerche anche fortissimi. Alcune però di quelle righe possono essere dovute all’assorbimento atmosferico tellurico, poiché in Sirio le abbiamo vedute soventi quando la stella era bassa, ma raramente al meridiano. In α Lira, le abbiamo vedute anche al meridiano (27 giugno 1869).

Che le sfumature delle linee principali dell’Idrogeno nelle stelle grandi fossero reali e non illusione, né difetto di strumento, si provò da ciò che mentre col prisma obiettivo in β Gemelli le sue righe fine erano nettissime, in Sirio e α in Lira erano invece diffuse e larghe in tal grado che non potevano attribuirsi a difetto dello strumento.

spettro β Geminorum (Polluce)

β Geminorum (Polluce)

Molte stelle minori bianche paiono avere spettro continuo e senza righe, ma studiate con cura si trovano di questo tipo colle righe però molto fine. Questa classe è numerosissima e abbraccia più della metà delle stelle visibili.

È bene avvertire che in parecchie di questo tipo, come in Procione, α Aquila, α Vergine ecc. si scorgono molte righe fine abbastanza ben visibili, ai luoghi stessi dove appena si scorge traccia nelle altre: talchè queste sembrano esser casi di transizione da questo tipo al seguente, ma si sa che queste stelle sono leggermente variabili, e per ciò anche il tipo non ha sempre la stessa purezza.

spettro α Canis Minoris (Procione)

α Canis Minoris (Procione)

spettro α Virginis (Spica)

α Virginis (Spica)

2°. Il secondo tipo è quello delle stelle gialle: esse hanno righe finissime; le righe dell’Idrogeno pure vi sono, ma sono sottili e non punto così marcate come nelle precedenti, e lo spettro è perfettamente eguale a quello del Sole; la Capra, Polluce, α Balena, α Orsa Maggiore e molte altre di color giallo sono di questo tipo.

spettro α Orsa Maggiore (Dubhe)

α Orsa Maggiore (Dubhe)

………………..

Per ricevere una copia integrale del libro è sufficiente una donazione libera.

Con la ricevuta della vostra donazione, vi invieremo una mail con i dati per scaricare comodamente la vostra copia. polaris@osservatoriofeynman.eu,

 Domenico Licchelli, Francesco Strafella, Paolo Cazzato  – 2014