Il diagramma delle meraviglie (tratto da Il Gioco delle Stelle) – Vincenzo Zappalà

Copertina Gioco delle stelle..Se fossi vissuto qualche secolo fa, ciò che sto per dirvi mi avrebbe fatto sicuramente finire sul rogo. Oggi, invece, alcune considerazioni scientifiche poco “ortodosse” che sto per esprimere getterebbero una luce scarsamente professionale sulla mia persona. Sarei comunque “distrutto”. In fondo, però, mi sento scusato, dato che faccio tutto ciò solo e soltanto per dimostrare come il diagramma HR, mai abbastanza celebrato, sia la vera pietra di Rosetta dell’astrofisica, lo strumento più importante per la comprensione degli scopi e delle fasi creative ed evolutive delle stelle e, quindi, dell’intero Universo. Per comprendere meglio la straordinaria scoperta dei due scienziati (Ejnar Hertzsprung e Henry Norris Russell) e l’immensa ricaduta sull’evoluzione dell’intero Universo, è però necessario partire un po’ da lontano e risolvere (o tentare di risolvere) alcuni problemi ben più assillanti e misteriosi. In altre parole, dobbiamo sistemare alcuni concetti fondamentali………

…Siamo perciò giunti alla terza parte, quella decisiva, per la comprensione totale del più bel gioco dell’Universo…Finalmente abbiamo in mano le misure (più o meno accurate e più o meno numerose) delle famose quattro grandezze fondamentali. E’ ora di cercare di metterle a confronto, sfruttando anche le relazioni che ho, di tanto in tanto, mostrato.

Prima di tutto, fatemi fare una considerazione abbastanza personale, ma credo condivisibile. Molti potrebbero dire: “Non ci voleva una grande fantasia o intelligenza a cercare di legare tra loro i parametri stellari che cominciavano a essere disponibili attraverso osservazioni sempre più precise e numerose”. A posteriori hanno forse ragione, ma proviamo a metterci nei panni degli scienziati di fine ottocento. Grandi passi avanti per ciò che era la meccanica celeste (teoria facilmente verificabile nel sistema solare) e per la fisica teorica (anche se non vi erano i “mostri” del CERN). Per le stelle, invece (e ancor peggio per quelle strane nebulosità che si intravvedevano tra loro) si era proprio alla preistoria. Sì, c’era il Sole che poteva far capire qualcosa, ma ancora niente o quasi si sapeva degli infiniti puntini luminosi che brillavano nel cielo.

Proprio in quel periodo così importante per l’astrofisica sperimentale si mettono a punto due tecniche osservative importantissime e decisive: la fotografia e la spettroscopia. La prima evolverà poi nei sistemi di ricezione odierni ben più potenti, ma allora era l’unico metodo per entrare nelle profondità del cielo e poter raccogliere luce indipendentemente dalle caratteristiche del limitato occhio umano. Più si esponeva una lastra e più deboli e numerose erano le sorgenti luminose che si mostravano su quel pezzo di vetro cosparso di gelatina.

Ancora più importante era la spettroscopia, anche se molto rozza e primitiva. Essa permetteva di sezionare nei vari “colori” la luce bianca che giungeva a terra, capirne la somiglianza con il corpo nero e tutto ciò che abbiamo già raccontato.

Decisivo, però, è stato il passo che le osservazioni sempre più accurate potevano finalmente permettere. Già si sapeva come poter fare a calcolare la distanza di una stella relativamente vicina, ma restava teoria pura. A fine ottocento arrivarono i primi risultati seri e precisi. Pensate che prima di quel momento molti scienziati pensavano che le stelle avessero più o meno tutte la stessa luminosità (d’altra parte si conosceva solo il Sole) e che l’unico fatto che le faceva apparire di diversa luminosità era la distanza. Un bell’alibi anche per le teorie sulla fisica stellare: bastava studiare il Sole e poi determinare le distanze. Il cielo era pieno di tanti soli sparsi ovunque, tutto lì.

Questo fatto è molto importante per capire la scarsa conoscenza sperimentale e teorica delle stelle a fine ottocento: erano tutte uguali e forse la loro vita relativamente semplice. Ad esempio, si pensava che Sirio fosse la stella più vicina a noi, essendo la più luminosa.

Sirio e la costellazione cane maggiore

La costellazione del Cane Maggiore impreziosita dalla brillante Sirio

Quando si scoprì che la stella di Barnard era decisamente più vicina anche se appariva molto debole (25000 volte meno luminosa di Sirio), le cose cambiarono completamente. Si era, però, già nel 1916 o giù di lì. Sarebbe stato facile in quel momento cominciare a riguardare le proprietà osservative delle stelle e a pensarci sopra. Ma Russel e Hertzsprung lo avevano già fatto e avevano già indirizzato le ricerche per il futuro.

Ecco la loro grandezza e genialità: aver pensato a qualcosa prima che diventasse chiaro e facile. O, meglio, aver aperto gli occhi per la pianificazione delle ricerche successive che magari avrebbero preso altre direzioni e avrebbero ritardato la scoperta dell’evoluzione stellare.

Permettetemi un esempio in un campo completamente diverso, ma molto calzante (almeno per me). Oggi vi sono moltissimi pittori, anche di scarso valore artistico, capaci di disegnare un paesaggio, una serie di persone, uno scorcio cittadino, seguendo le regole della prospettiva. E’ una tecnica di dominio pubblico che necessita solo un po’ di concentrazione e di studio. Applicarla, invece, nei dipinti del primo quattrocento voleva dire essere dei geni assoluti e dei rivoluzionari totali. Masaccio, Piero della Francesca e i loro seguaci e coetanei hanno aperto una nuova strada nell’arte. Senza di loro forse non conosceremmo né Michelangelo né Leonardo. Chissà… qualcuno ci sarebbe senz’altro arrivato in seguito? Sicuramente sì, ma quando? Di certo la storia dell’arte sarebbe stata diversa. E così anche l’astrofisica senza Russel e Hertzsprung.

Intorno al 1910 si cominciò a pensare che le stelle si dividessero in due grandi categorie: quelle luminose, blu e calde e quelle deboli, rosse e fredde. Nessuno infatti aveva ancora trovato una stella debole e calda. Qualsiasi stella poco luminosa veniva, quindi, giudicata sicuramente anche fredda.

L’astronomo statunitense Henry Norris Russel decise di studiare più a fondo la questione e vedere come si comportavano le stelle con distanza conosciuta (e quindi di magnitudine assoluta nota). L’unico modo era di avere il maggior numero di informazioni sul colore e la temperatura degli astri. In poche parole, sul loro tipo spettrale. Russel si limitò, però alle stelle vicine e luminose, le uniche che permettevano allora una misura accurata della distanza. Era inutile ottenere spettri di oggetti lontani e/o deboli di cui non era possibile ricavare la lontananza. Una scelta pratica e inconfutabile.

Chiese, allora, a Edward Pickering di cercare, nel suo archivio, gli spettri di stelle aventi tali caratteristiche. In particolare chiese quello di una stella veramente speciale che aveva creato non poca confusione. Essa era la debole compagna di Omicron2 Eridani, chiamata appunto Omicron2 Eridani B. Insieme all’assistente Willamina Fleming, Pickering trovò quello che Russel cercava. La stella era estremamente debole ma di tipo spettrale A. Impossibile! Il tipo spettrale A era riservato a stelle caldissime, rappresentanti meno del 5% delle stelle di spettro conosciuto. La temperatura doveva aggirarsi intorno ai 9000 gradi, nettamente superiore a quella del Sole.

Come già sappiamo la luminosità varia con la quarta potenza della temperatura, il che vuole dire che se fosse stata grande come il Sole avrebbe dovuto essere incredibilmente brillante. Per poter ricevere un flusso luminoso intrinsecamente così potente, ma all’apparenza debolissimo, la luce doveva essere emessa da una superficie piccolissima (vedete come sono comode le formule che legano temperatura, luminosità e raggio? Niente da fare: la formula matematica permette di semplificare e di condensare discorsi lunghissimi e approssimativi. E’ proprio il linguaggio della fisica). La conclusione era una sola: Omicron2 Eridani B doveva essere una stella di esigue dimensioni, probabilmente non più grande della Terra!

Russel, Pickering e Fleming si erano imbattuti nella prima nana bianca e nella eccezionalità delle sue caratteristiche fisiche. In realtà il color “bianco” valeva solo per quella stella in particolare, dato che poi se ne trovarono di tutti i colori (cambiando la temperatura), dall’azzurro al giallo e al rosso, ma il nome rimase lo stesso per sempre.

L’interesse di Russel per i legami esistenti tra magnitudine assoluta, colore e temperatura divenne ancora più spasmodico e l’astronomo decise di mettere su un grafico le caratteristiche delle stelle di cui aveva chiesto lo spettro. In ordinata inserì la magnitudine assoluta (indipendente dalla distanza) e in ascissa il tipo spettrale o -alternativamente- l’indice di colore (anch’esso indipendente dalla distanza) che, come sappiamo (e sapevano), è legato alla temperatura effettiva del corpo nero corrispondente.

Russell, Nature, 93, 252 (1914)

Il diagramma originale di Russel, pubblicato nel 1913. Si noti la prima piccola, isolata, caldissima, nana bianca – Nature, 93, 252 (1914)

Russel pubblicò il suo grafico nel 1913. Esso divenne immediatamente popolare e considerato il modo migliore per rappresentare in un sol colpo l’intera popolazione stellare. Il nome rimase “diagramma di Russel” finchè non si venne a conoscenza che già nel 1911 l’astronomo danese Ejnar Hertzsprung aveva pubblicato un grafico analogo su una sconosciuta rivista che nessuno aveva praticamente letto. Con grande onestà scientifica (a volte gli studiosi sanno dare piccole lezioni di umiltà e di correttezza) il nome del diagramma divenne di Hertzsprung-Russel, con il nome del danese per primo. Ormai si parla di questo metodo di rappresentazione come del diagramma HR.

Non tutto lo spazio era occupato e vi era una chiara linea di tendenza principale. Le stelle blu, calde e luminose, si piazzavano in alto a sinistra e le rosse, fredde e deboli, in basso a destra (come già ipotizzato e previsto). Tuttavia, vi era un altro ramo composto di stelle rosse e fredde: oggetti che invece di diminuire la propria magnitudine la aumentavano. Infine, isolata e quasi assurda, Omicron2 Eridani B, calda e di irrisoria luminosità.

Il diagramma di Russel si riferiva solo a stelle che si trovavano entro i 30 anni luce dalla Terra.

h-r-diagram

Diagramma HR schematico moderno

A questo punto era chiaro che la popolazione stellare non seguiva soltanto un’unica legge magnitudine-temperatura, ma era composta da oggetti che si staccavano dal trend normale. Era necessario iniziare a studiare gruppi di oggetti particolari, per vedere se la situazione sarebbe stata sempre la stessa oppure sarebbe cambiata.

Un primo gruppo da prendere in considerazione era quello delle Pleiadi, (M45) nella costellazione del Toro.

Three-colour image made from plates taken at with the UK Schmidt TelescopeB8960, IIa-O/GG 385; V8826, IIa-D/GG 495; R8935, 098-04/RG 630.  B:G:R  30:30:40 min exposure

Three-colour image of M45 made from plates taken at with the UK Schmidt TelescopeB8960, IIa-O/GG 385; V8826, IIa-D/GG 495; R8935, 098-04/RG 630. B:G:R 30:30:40 min exposure

L’ammasso delle Pleiadi rappresentato nel diagramma HR.

L’ammasso delle Pleiadi rappresentato nel diagramma HR

Tutte le stelle sono quasi perfettamente piazzate lungo la linea che parte da quelle calde, blu e luminose e termina a quelle fredde, rosse e deboli. Non vi sono nane bianche e nemmeno stelle fredde, rosse e luminose.

Un secondo è l’ammasso globulare M3, nella costellazione dei Cani da Caccia.

ammasso globulare m3 noao

Globular Cluster M3 from WIYN – Credit & Copyright: S. Kafka & K. Honeycutt (Indiana University), WIYN, NOAO, NSF

hr diagram ammasso globulare m3

L’ammasso globulare M3 rappresentato nel diagramma HR. The main sequence turn off has an apparent value of r = 19.25 – (c) Galactic Discovery Project.

In questo diagramma, trascurando per un momento la striscia quasi orizzontale, sembra che esista solo la parte inferiore della diagonale delle Pleiadi, quella degli oggetti freddi e deboli. Al posto di quella superiore (stelle calde e luminose) appare il ramo di destra degli astri freddi e brillanti.

Un piccolo chiarimento. La scelta di due gruppi così speciali è legata essenzialmente all’alto numero di oggetti che contengono e alla più che probabile vicinanza delle stelle che li compongono. Anche se nelle due figure precedenti è inserita la magnitudine assoluta, per gruppi di stelle poste tutte alla stessa distanza si può usare la magnitudine apparente. Un grosso vantaggio indubbiamente sfruttato in tempi in cui la determinazione della distanza non era un gioco da bambini.

Le tre figure precedenti erano un bell’enigma per gli astronomi dell’inizio del XX secolo. Una possibilità era che le tre popolazioni fossero gruppi di stelle intrinsecamente differenti. Quella più seguita, però, implicava la ricerca di un unico modello per i tre diagrammi. D’altra parte la zona in basso a destra era comune alle tre popolazioni.

Tra i molti studiosi, si distinse Allan Sandage, che propose un “movimento” delle stelle lungo il diagramma HR in funzione della loro età. Le stelle nascono come le Pleiadi, lungo la diagonale principale. All’avanzare dell’età iniziano a lasciarla spostandosi sulla destra e le più luminose sono le prime a muoversi. Questa evoluzione si vede chiaramente nel diagramma dell’ammasso globulare. Un po’ alla volta anche gli astri più deboli lasciano la diagonale. Ovviamente il primo diagramma di Russel conteneva stelle di tutte le età e quindi era un mix di popolazioni diverse. Insomma le differenze nei tre diagrammi erano solo dovute all’età delle stelle.

Era nata l’astrofisica stellare.

3.2 La grandezza delle bolle

Prima di andare avanti nel nostro gioco, parliamo un po’ del raggio. Vi sarete accorti che non ho detto quasi niente sulla determinazione diretta di questo parametro. In realtà i problemi sono essenzialmente due: è difficile misurarlo e non è facile definire un limite esterno per un oggetto gassoso che non ha una vera e propria superficie come i pianeti e che tutto fa meno che stare tranquillo e rilassato.

Potrei dirvi che oggi si riescono a determinare, finalmente, alcuni raggi di stelle giganti per mezzo dell’interferometria e che altre misure si ottenevano già da tempo con le binarie a eclissi. Tuttavia, il raggio diventa veramente importante solo nei momenti critici delle stelle, ossia in quelli che nei primi diagrammi avevano creato sorpresa e poi aperto le porte all’evoluzione stellare.

Sto parlando, ovviamente, del ramo di destra a bassa temperatura e luminosità elevata e delle nane bianche, le prime anomalie incontrate nel diagramma appena nato. Ebbene, chi le causa e le fa notare visivamente è soprattutto il raggio. E’ lui che non segue più le regole e mette in evidenza i percorsi anomali.

Prendiamo, ad esempio, il ramo di destra. Abbiamo già visto che la temperatura scende drasticamente, ma la superficie che emette luce è talmente grande (il raggio è diventato enorme) che la luminosità supera di 100 volte quella emessa quando la temperatura era più alta. In altre parole, la luminosità cresce se aumentiamo la superficie in grado di distribuirla verso l’esterno. Faccio un paragone un po’ azzardato: un vagone della metropolitana è stracolmo di persone, ma la porta di uscita è una sola. Vedrò saltar fuori molta gente, per molto tempo, ma non avrò un flusso mostruoso di ritardatari che corrono. Pochi alla volta, insomma. Se, invece aumento il numero delle porte, immediatamente tutti gli occupanti saltano fuori e danno l’idea di una folla sterminata, maggiore di quella precedente.

Prima, tutto seguiva le regole della calma e dell’ordine (equilibrio idrostatico quasi perfetto); poi l’equilibrio si è rotto e si è dovuta cercare una nuova soluzione. Continuando in questo paragone (che vi prego di prendere con le dovute molle), se le porte si rompono in tutto il treno e ne resta una sola per l’intero convoglio, vedremo uscire pochissime persone anche se per un periodo lunghissimo. Questo assomiglia al caso delle nane bianche. La temperatura è altissima, ma il raggio è talmente piccolo che la quantità di luce emessa non può essere che estremamente modesta. Insomma, variare il raggio è come aprire un numero diverso di porte in un convoglio stracolmo di persone.

Se, poi, il numero di persone (ossia la massa della stella) comincia anch’essa a variare le cose si complicano. Per esempio, nel caso delle nane bianche, molti viaggiatori se ne sono andati da un’uscita posteriore non visibile. In altre parole, le stelle hanno perso anche una notevole quantità di massa.

Scusate questa digressione un po’ fantasiosa, ma è estremamente importante cominciare, con il piede giusto, un’analisi accurata del diagramma HR e di quelle mille cose, a prima vista nascoste, che sa raccontarci direttamente o indirettamente e che spesso vengono tralasciate nei libri. Il discorso che ho appena fatto può essere sintetizzato da un’unica formula che già ben conoscete e che riporto nuovamente:

L = 4 πσT4R2

Con quel famoso linguaggio che a tanti non piace, essa dice la stessa cosa delle mie lunghe e strampalate parole ma in modo perfettamente quantitativo. Se voglio lasciare la luminosità costante o al limite farla anche aumentare un po’ (ramo destro anomalo del diagramma HR) mentre la temperatura sta miseramente scendendo, ho un solo modo per agire: aprire le porte, ossia aumentare il raggio. Dato che la temperatura viaggia con la quarta potenza devo anche aumentarlo di molto, visto che lui va solo al quadrato!

VY Canis Majoris

A size comparison between the Sun and UY Canis Majoris. (c) HeNRyKus

…………………………………

Vincenzo Zappalà – 2014

Per saperne di più:

Il Gioco delle Stelle

Astronomia Siderale, omaggio ad Angelo Secchi – Domenico Licchelli

Copyright © Domenico Licchelli – Progetto Polaris 2014 www.osservatoriofeynman.eu  All right reserved Questo volume rientra nelle iniziative del Progetto Polaris e NON ha carattere commerciale. Qualunque forma di distribuzione deve perciò essere coerente con le modalità e gli obiettivi del progetto riportate nella pagina indicata.

Copyright © Domenico Licchelli – Progetto Polaris 2014
www.osservatoriofeynman.eu
Questo volume rientra nelle iniziative del Progetto Polaris e NON ha carattere commerciale. Qualunque forma di distribuzione deve perciò essere coerente con le modalità e gli obiettivi del progetto riportate nella pagina indicata.

Dalla prefazione del libro:

Nel 1875 Giovanni Virginio Schiaparelli, uno dei grandi astronomi italiani del passato, nella sua opera “Le sfere omocentriche di Eudosso, di Callippo e di Aristotele”, così scriveva: “Nel prender a meditare sui monumenti dell’antico sapere, inspiriamoci, o lettore, a quel rispetto ed a quella venerazione che si devono avere per coloro, che, precedendoci in un’ardua strada, ne hanno a noi aperto ed agevolato il cammino. Con questi sentimenti impressi nell’animo ben ci avverrà d’incontrare osservazioni imperfette e speculazioni lontane dalla verità come oggi è conosciuta; ma non troveremo mai nulla né di assurdo, né di ridicolo, nè di ripugnante alle regole del sano ragionare. Se oggi noi, tardi nipoti di quegli illustri maestri, profittando dei loro errori e delle loro scoperte, e salendo in cima all’edifizio da loro elevato, siamo riusciti ad abbracciare collo sguardo un più vasto orizzonte, stolta superbia nostra sarebbe il credere per questo d’aver noi la vista più lunga e più acuta della loro. Tutto il nostro merito sta nell’esser venuti al mondo più tardi.”
Questo testo vuole essere proprio una dimostrazione del rispetto e della venerazione che abbiamo per coloro che, precedendoci, hanno aperto la strada che oggi ci consente di ottenere risultati straordinari, impensabili fino a pochi decenni fa. Le moderne tecnologie, infatti, permettono l’analisi e lo studio di fenomeni complessi e stupefacenti, un tempo appannaggio esclusivo delle grandi strutture di ricerca, anche in piccoli laboratori didattici. Le immagini e gli spettri inseriti nel testo sono stati acquisiti negli anni nei nostri Osservatori astronomici con strumentazione commerciale o auto-costruita. Con un’adeguata preparazione è perfino possibile contribuire direttamente alla ricerca scientifica operando in Osservatori astronomici privati, come nel nostro caso.
Ancora più importante, a nostro avviso, è la valenza didattica insita nel ripercorrere con mezzi moderni le tappe che hanno portato i nostri predecessori a capire le leggi fondamentali della Fisica e delle Scienze tutte.
In questo volume, il nostro “eroe” è Angelo Secchi, gesuita, astronomo, direttore dell’Osservatorio del Collegio Romano, padre dell’Astrofisica stellare italiana ma non solo. Grazie anche ai suoi studi, la giovane spettroscopia applicata alle stelle divenne la stele di Rosetta che ha permesso poi di decodificare il messaggio nascosto nella luce degli oggetti celesti e di costruire, con cognizione di causa, il modello di Universo così come oggi lo conosciamo. Attraverso le sue parole conosceremo la classificazione in tipi spettrali, i tentativi di interpretazione fisica degli spettri osservati e, soprattutto, diverremo amici di alcune delle stelle più belle ed interessanti del firmamento, ognuna con la sua firma caratteristica ed allo stesso tempo unica così come ce la svelano i nostri strumenti.
Il testo, dopo una presentazione divulgativa dello stato attuale delle conoscenze di base di Fisica stellare, procede alternando le originali osservazioni di Secchi agli spettri moderni. Le corpose citazioni (riportate in corsivo) sono estratte da “Le Stelle: saggio di Astronomia siderale” del 1877, un testo brillante, scritto con uno stile molto divulgativo tale da renderlo, ancora oggi, di gradevolissima lettura, e che racchiude alcune delle conclusioni a cui era giunto Secchi dopo molti anni di intenso lavoro. L’obiettivo non è solo quello di guardare sotto una luce nuova il cielo stellato e la sua bellezza ma anche di acquisire una maggiore consapevolezza del posto che occupiamo nell’Universo attraverso la conoscenza dei suoi costituenti più importanti. E’ anche l’occasione per stimolare la riflessione sugli enormi progressi compiuti dalla scienza astronomica nell’ultimo secolo e un doveroso riconoscimento ai grandi scienziati che con la loro instancabile passione e dedizione li hanno resi possibili………..

Omaggio ad un grande scienziato

L’Astronomia si era sempre esclusivamente occupata fino ad ora della grandezza e distanza degli astri e di alcune poche particolarità fisiche di non molta importanza: il pretendere di conoscere la loro natura materiale e composizione chimica si sarebbe creduto un assurdo; fortunatamente ciò non è più vero, e l’astronomo può analizzare la natura delle materie stellari colla facilità con cui il chimico analizza le sostanze terrestri nel suo laboratorio. Sì grande progresso della scienza è dovuto al piccolo strumento, lo spettroscopio. La luce qual viaggiatrice industriosa è quella che ci reca dalla profondità dello spazio queste preziose notizie…..Il primo che ottenesse uno spettro di stella con vantaggio della scienza fu Fraunhofer. Dopo aver con somma perfezione e delicatezza descritto lo spettro solare, e le numerose sue righe, egli intraprese lo studio di altre luci e tra queste ancor di alcune stelle.”

joseph-von-fraunhofer-sonnenspektrum

Francobollo commemorativo del bicentenario della nascita di Fraunhofer

..Fraunhofer trovò così che la Luna, Venere e Giove avevano spettro identico a quello del Sole, come era da aspettarsi, ma le stelle in generale l’aveano molto diverso..”

Spettro del Sole

Spettro del Sole

Spettro della Luna

Spettro della Luna

venus_m_lisa_2012_03_26_c-s

Spettro di Venere

Spettro della Luna e Giove

Oggi con i nostri rivelatori e le nostre tecniche di visualizzazione ed analisi notiamo che è vero che lo spettro della Luna e di Venere nel visibile è sostanzialmente identico a quello del Sole, essendo il risultato della semplice riflessione della luce solare da parte delle superfici planetarie o atmosferiche. Nel caso di Giove, tuttavia, è evidente che allo spettro solare si sovrappongono della bande sfumate dovute all’Ammoniaca (NH3) ed al Metano (CH4) presenti nella sua atmosfera. Seppur individuate già da Secchi, furono associate correttamente a queste molecole solo nel 1930 da R. Wild e V. Slipher.

In Sirio notò una forte riga nera nel verde e due nell’azzurro; e trovò righe simili in alcune altre stelle; ma il sistema di queste righe, la posizione e la qualità trovati in quelle che esaminò, erano diverse assai da quelle del Sole. Senonché la debolezza delle luci era tanta che rendeva assai difficile l’osservazione.

spettro sirio

α Canis Majoris (Sirio)

spettro α Geminorum (Castore)

α Geminorum (Castore)

Riconobbe in Castore la stessa riga del verde che avea trovata in Sirio e vide lo spettro di Polluce solcato di moltissime righe fine tra le quali riconobbe la riga solare D.

spettro β Geminorum (Polluce)

β Geminorum (Polluce)

Nella Capra riconobbe la D e la B del Sole, in α Orione vide pure queste stesse righe e una moltitudine di altre.”

spettro α Aurigae (Capella, Capra)

α Aurigae (Capella, Capra)

spettro Alpha Orionis (Betelgeuse )

Alpha Orionis (Betelgeuse )

Le osservazioni sempre più raffinate di Fraunhofer se da un lato arricchivano il campionario di righe, dall’altro richiedevano una qualche identificazione ed interpretazione. Ma come procedere? La risposta ce la indica lo stesso Secchi:

“….È nota ai nostri lettori l’importanza degli studi spettrali del Sole, mediante i quali si è giunto a riconoscere la natura chimica delle sostanze che trovansi incandescenti nell’astro: uno studio simile dovevasi pertanto eseguire sulle stelle. Due erano le cose principali da investigare: 1) quali fossero le sostanze costitutive delle loro atmosfere incandescenti; 2) se esse atmosfere erano identiche o no in tutte le stelle…

Il primo studio fu per alcune stelle a meraviglia eseguito dai sigg. Huggins e Miller, i quali parte con osservazioni di confronti diretti degli spettri chimici, parte colla comparazione dello spettro solare, vi provarono definitivamente l’esistenza di varie righe solari e quelle di molte sostanze chimiche. Così in Sirio mostrarono che le righe principali erano dell’Idrogeno, e che probabilmente eravi anche il Sodio e il Magnesio. Le nostre osservazioni ci fecero scoprire la quarta riga dell’Idrogeno in allora ancora ignota ai chimici, e misero fuor di dubbio che esse righe erano molto larghe e sfumate. Da principio il celebre sig. Huggins, credette questo dovuto a difetto del nostro strumento, ma ora ha convenuto ancor esso della verità delle sfumature, donde segue che l’Idrogeno ivi trovasi sotto una pressione considerabile. Dalle nostre prime osservazioni fu pure dimostrata in α Orione la presenza dei metalli, Sodio, Ferro, Magnesio, ecc. e due belle tavole diede il sig. Huggins di questa stella e di Aldebaran da noi estese e aumentate. Noi trovammo che l’Idrogeno in α Orione non mancava, ma le sue righe erano confuse nelle grandi zone scure di cui è fornita questa stella, e che l’indebolimento loro poteva provenire dal dare quella stella uno spettro in parte diretto.

Un confronto accurato fatto dello spettro di Arturo e di Aldebaran, di Polluce e della Capra con quello del Sole mediante il prisma obiettivo, ci mostrò più di 60 righe francamente riconoscibili come coincidenti colle metalliche solari, e quindi l’esistenza in quelle stelle del Sodio, del Calcio, del Ferro. Per questa sostanza sono specialmente notabili le righe del verde che ivi formano una numerosa serie di gruppi identici, che costituiscono una bella persiana. Riducendo lo spettro solare a debole intensità, vedemmo risaltare anche meglio l’identità degli spettri stellari e solari in queste stelle. Ma una cosa caratteristica degli spettri stellari è che moltissime stelle oltre le righe fine metalliche danno zone molto fosche come vedesi in α Orione, in β Pegaso, Omicron Balena ecc.

spettro β Pegasi

β Pegasi

spettro Omicron Ceti (Omicron Balena)

Omicron Ceti (Omicron Balena)

Curiosissime oltremodo si mostrano certune come α Ercole, la 12561 di Lalande, ecc. i cui spettri sono fatti a dirittura a colonnato, o piuttosto come un nastro iridato avvolto con successive pieghe cilindriche.

spettro α Herculis

α Herculis

Il fatto più saliente verificato in queste ricerche è stato questo: che mentre le stelle sono numerosissime, pure i loro spettri si riducono a poche forme ben definite e distinte, che per brevità noi chiamammo Tipi. L’esame delle stelle ci ha occupato per parecchi anni: furono esaminate quasi tutte le principali, e moltissime altre; almeno 4000 in tutto, perché oltre alla stella principale si esaminava tutto il suo contorno….

Ecco pertanto le principali conclusioni. Tutti gli spettri stellari, tranne pochissime eccezioni possono ridursi a 4 Tipi principali che sono descritti nelle due tavole cromolitografiche qui inserite.

fonte: Die Sterne, Grundzuge der Astronomie der Fixsterne (1878). Da notare l'ordine invertito con cui era disegnato lo spettro rispetto alla convenzione moderna.

fonte: Die Sterne, Grundzuge der Astronomie der Fixsterne (1878). Da notare l’ordine invertito con cui era disegnato lo spettro rispetto alla convenzione moderna.

1°. Il primo tipo è quello delle stelle bianche o azzurrognole come Sirio, α Lira, β, γ, β, ε, ζ, η dell’Orsa Maggiore, Castore, Markab, α Ofiuco ecc.. Lo spettro di queste è quasi continuo: soltanto esso è solcato da quattro forti righe nere che sono quelle dell’Idrogeno, ma rovesciate secondo il noto principio spettrale dell’assorbimento. Tutte e quattro queste righe possono vedersi nelle più lucide; nelle più deboli non è ordinariamente visibile che la Hβ, ossia la F del Sole, ma in genere questa è molto larga e dilatata e spesso sfumata agli orli, specialmente in Sirio. Questa sfumatura è indizio di elevatissima temperatura e di forte densità dell’atmosfera idrogenica delle stelle di quest’ordine.

spettro sirio

α Canis Majoris (Sirio)

Vi si vedono anche tracce di altre linee come del Magnesio, del Sodio e alcuna del Ferro, ma esse sono debolissime e richiedono aria squisita. A noi però non è mai riuscito di avere queste righe secondarie costantemente nette e precise come in altre stelle di cui facemmo i disegni.

spettro alpha Lyrae (Vega)

α Lyrae (Vega)

In Sirio e in Vega talora esse sono ben distinte, ma per lo più sono appena discernibili anche ad aria ottima; quindi ne segue che queste loro atmosfere sono certamente alquanto variabili. Le figure dello spettro di questa classe che circolano nei libri di spettroscopia carichi di numerose e grosse righe nere, per noi sono assolutamente erronee o almeno esagerate: e sì che non abbiamo risparmiato mezzi di ricerche anche fortissimi. Alcune però di quelle righe possono essere dovute all’assorbimento atmosferico tellurico, poiché in Sirio le abbiamo vedute soventi quando la stella era bassa, ma raramente al meridiano. In α Lira, le abbiamo vedute anche al meridiano (27 giugno 1869).

Che le sfumature delle linee principali dell’Idrogeno nelle stelle grandi fossero reali e non illusione, né difetto di strumento, si provò da ciò che mentre col prisma obiettivo in β Gemelli le sue righe fine erano nettissime, in Sirio e α in Lira erano invece diffuse e larghe in tal grado che non potevano attribuirsi a difetto dello strumento.

spettro β Geminorum (Polluce)

β Geminorum (Polluce)

Molte stelle minori bianche paiono avere spettro continuo e senza righe, ma studiate con cura si trovano di questo tipo colle righe però molto fine. Questa classe è numerosissima e abbraccia più della metà delle stelle visibili.

È bene avvertire che in parecchie di questo tipo, come in Procione, α Aquila, α Vergine ecc. si scorgono molte righe fine abbastanza ben visibili, ai luoghi stessi dove appena si scorge traccia nelle altre: talchè queste sembrano esser casi di transizione da questo tipo al seguente, ma si sa che queste stelle sono leggermente variabili, e per ciò anche il tipo non ha sempre la stessa purezza.

spettro α Canis Minoris (Procione)

α Canis Minoris (Procione)

spettro α Virginis (Spica)

α Virginis (Spica)

2°. Il secondo tipo è quello delle stelle gialle: esse hanno righe finissime; le righe dell’Idrogeno pure vi sono, ma sono sottili e non punto così marcate come nelle precedenti, e lo spettro è perfettamente eguale a quello del Sole; la Capra, Polluce, α Balena, α Orsa Maggiore e molte altre di color giallo sono di questo tipo.

spettro α Orsa Maggiore (Dubhe)

α Orsa Maggiore (Dubhe)

………………..

Per ricevere una copia integrale del libro è sufficiente una donazione libera.

Con la ricevuta della vostra donazione, vi invieremo una mail con i dati per scaricare comodamente la vostra copia. polaris@osservatoriofeynman.eu,

 Domenico Licchelli, Francesco Strafella, Paolo Cazzato  – 2014

Non solo Barocco – Livio Ruggiero

copertina-livio

Ai giovani salentini,

nella speranza che sappiano valorizzare

il ricco patrimonio culturale della loro terra

e alla memoria di mia moglie Roberta,

che ha condiviso questa speranza

e operato con passione

perché diventasse realtà.

__________________________________________________________

Prefazione

Nel 1967 fui invitato dal mio professore di Fisica teorica, Niccolò Dallaporta, a trasferirmi da Padova a Lecce per partecipare alla grande avventura della fondazione della Facoltà di Scienze Matematiche Fisiche e Naturali di quella Università, che era appena passata dallo status di Università privata, voluta dal Consorzio Ionico-Salentino, a quello di Università Statale.

Avevo messo su famiglia da pochi mesi, ma dopo una rapida consultazione con mia moglie, che si era appena trasferita a Padova col suo pianoforte a un quarto di coda dal nostro comune paese natale, Velletri nei Colli Albani, accettai con entusiasmo la proposta e a settembre del 1968 emigrammo a Lecce, con “armi e bagagli” compreso il succitato pianoforte, incuranti del coro di proteste dei numerosi amici veneti che ci rimproveravano di fare questo salto nel buio nel “profondo Sud”.

Appena arrivati ci demmo subito da fare per vedere un po’ dove eravamo finiti.

Lecce e il Salento ci apparvero subito come una vecchia signora, di chiare origini nobili, adagiata in un paesaggio stupendo, ma con i suoi sontuosi abiti di merletto un po’ rosicchiati dai topi e ricoperti di ragnatele.

Il girovagare nel centro storico della città ci fece scoprire tutta la magnificenza, anche se un po’ polverosa e abbandonata, del barocco, ma un giorno in una viuzza ci imbattemmo in una lapide, posta troppo in alto per essere vista facilmente e troppo oscurata dal tempo per essere letta chiaramente, che ci aprì un orizzonte impensabile, alternativo a quanto avevamo visto fino ad allora, quello del patrimonio scientifico di questa estrema parte orientale d’Italia.

Anche se di questo orizzonte si sono potute rilevare solo alcune evidenze, per altro notevoli, degli ultimi tre secoli, non è azzardato pensare che esso si estenda su un arco di tempo più ampio, che ha per estremi due matematici: Archita da Taranto, nel IV secolo avanti Cristo, considerato uno dei grandi matematici dell’antichità, ed Ennio De Giorgi, nel XX secolo, senz’altro uno dei più grandi matematici del Novecento.

E’ per me emozionante ricordare che il Comitato Tecnico ordinatore della Facoltà di Scienze, che ci propose il trasferimento, era composto proprio da Ennio De Giorgi, che insegnava a Pisa, da Niccolò Dallaporta, mio professore all’Università di Padova, e da Alberto Bonetti, dell’Università di Firenze.

La ricerca e la documentazione sul patrimonio scientifico salentino divenne subito per me uno dei passatempi preferiti, cui dedicare parte del tempo, poco in verità, lasciato libero dalle incombenze accademiche e familiari.

I risultati della ricerca divennero presto oggetto di brevi articoli sulla stampa locale e di conferenze presso scuole e circoli culturali, in cui cercavo di far apprezzare ai miei nuovi concittadini i tesori di un’eredità culturale sconosciuta ai più, non in contrapposizione ma ad arricchimento e completamento di un patrimonio che appariva sempre più non costituito di soli tesori artistici, architettonici e letterari, nella profonda convinzione che la Cultura è una e che la sua separazione in cultura umanistica e cultura scientifica risulta in un inevitabile suo impoverimento.

L’idea di questo libro è nata durante uno di questi incontri, avvenuto significativamente in uno di quelli che si potrebbero definire i templi dell’Umanesimo salentino, il Centro Studi  “G. Comi” a Lucugnano.

E’ stato proprio al termine della mia conferenza su “Scienziati e sapere scientifico nel Salento dall’Ottocento al Novecento”, che i non numerosi ma qualificati ascoltatori presenti, quasi tutti “umanisti”, mi suggerirono di raccogliere in un libretto le “spigolature” che avevo loro illustrato, per fornire, soprattutto ai giovani, l’opportunità di scoprire anch’essi, quello che loro avevano scoperto e che tanto li aveva sorpresi ed entusiasmati.

E’ motivo di comprensibile orgoglio e soddisfazione che il risultato più importante di questo “bighellonare” tra le dimenticate emergenze del patrimonio scientifico salentino, sia stato quello di contribuire alla realizzazione del progetto di “Censimento e catalogazione delle collezioni scientifiche in Provincia di Lecce”, nell’ambito del grande Progetto Finalizzato “Beni Culturali” del Consiglio Nazionale delle Ricerche.

Il progetto, durato cinque anni, ha permesso di scoprire l’esistenza nelle scuole della Provincia di centinaia di apparecchi scientifici e di migliaia di preparati naturalistici, che costituiscono un tesoro di notevole importanza per la museologia scientifica e per la realizzazione di efficaci forme di didattica delle scienze che tengano conto del loro sviluppo storico.

Nel trattare i vari argomenti ho fatto ampio uso dell’inserimento di parti anche di una certa lunghezza dei testi citati, perché i volumi da cui sono tratti sono spesso difficilmente consultabili o perché piuttosto antichi o perché appartenenti all’editoria locale, con edizioni non sempre destinate alla vendita e spesso in numero di copie così limitato da esaurirsi con la distribuzione delle copie omaggio nel corso della presentazione al pubblico, con la conseguenza che spesso queste opere sono assenti anche presso le biblioteche pubbliche.

Naturalmente in tutti questi anni, oltre all’appassionato sostegno di mia moglie, che, docente di Educazione musicale, svolgeva analogo lavoro nel campo delle tradizioni popolari, e all’inconsapevole pazienza dei nostri tre figli, Emanuele Antonio e Francesco, nati a Lecce, cui certamente sottraevo una parte del tempo da dedicare loro, ho potuto godere dell’aiuto di tante persone, amici e colleghi o dirigenti e impiegati di scuole e biblioteche, che mi hanno fornito notizie e indicazioni o mi hanno facilitato la consultazione di libri e documenti. A loro, troppo numerosi per tentare di ricordarli tutti senza dimenticarne qualcuno, va il mio ringraziamento più sentito.

Debbo però ringraziare in modo particolare l’amico Ennio De Simone e mio figlio Antonio per la pazienza con cui hanno letto il manoscritto, suggerendomi correzioni e integrazioni, ma soprattutto per avermi spronato alla sua pubblicazione, né posso esimermi dal ringraziare l’Editore per la stima che mi ha sempre dimostrato.

Estratto:

A Lecce la prima lotta all’inquinamento elettromagnetico.

L’8 aprile 1868 il Sindaco Michele Lupinacci comunica al Candido che il Consiglio Municipale ha accettato la sua proposta per la rete di quattro orologi sincronizzati elettricamente. L’orologio motore e uno dei quadranti sarebbe stato collocato sul Sedile e altri tre quadranti sarebbero stati installati sul Liceo Palmieri, sulla Prefettura e sull’Ospedale dello Spirito Santo.

Si avviano quindi i lavori per l’orologio e il regolatore da sistemarsi sul Sedile e si presenta subito il problema dello stendimento dei fili elettrici per il collegamento con gli edifici su cui è prevista la collocazione degli altri tre quadranti. Infatti alcuni proprietari degli stabili interessati si rifiutano di far collocare le mensole per il sostegno dei fili.

Su incarico del Sindaco il Candido sottopone il problema al Prefetto, che, a sua volta, richiede il parere del Ministero dell’Interno e di quello dei Lavori Pubblici.

Il risultato di questa consultazione è che l’installazione degli orologi va considerata un’operazione di pubblica utilità e pertanto si può applicare la normativa già esistente per l’installazione dei telegrafi elettrici e dei lampioni dell’illuminazione pubblica, secondo cui i proprietari degli edifici interessati devono consentire l’installazione delle mensole che dovranno reggere i fili elettrici.

Ma se alcuni dei cittadini interessati danno di buon grado l’autorizzazione all’installazione delle mensole, come la Signora Felicita Gentile ved. Carrozzini, uno di essi si oppone tenacemente adducendo a motivo del suo rifiuto il possibile pericolo per la salute causato dal magnetismo indotto dalla corrente elettrica.

Quel cittadino non è una persona qualunque, ma il chimico Pasquale Greco, che è stato uno dei rappresentanti di Lecce alla VII Riunione degli Scienziati svoltasi nel 1845 a Napoli.

Ecco come risponde al Sindaco il 29 dicembre del 1869:

“… conoscendo purtroppo la forza elettro-magnetica, e la conducibilità de’ metalli in genere, non che l’affinità cui esercita l’elettrico del filo conduttore con quello dell’ambiente atmosferico, e quali danni possa accagionare agli edifizi, ne’ quali viene infisso; il sottoscritto si duole di non poter satisfare ai di Lei desideri d’apporsi al prospetto del suo palazzo i fili conduttori per l’orologio del Liceo…”.

E alla risposta del Sindaco così replica:

“Epperò è mio scopo soltanto, come con altra mia significai a V. S. di guarentire la salute di mia Famiglia, la quale paventa al solo nome di elettricità.”

Evidentemente la novità del progetto trova non preparate le autorità nei confronti di questo rifiuto, ma per non ritardarne lo sviluppo si decide di collocare provvisoriamente davanti alla casa del Greco un palo per sostenere i fili che per collegare il Sedile al quadrante posto sul Liceo Palmieri.

Dopo due anni, però, il problema non è stato ancora risolto e l’ 8 gennaio 1872 il Prefetto scrive alla Deputazione Provinciale chiedendo di togliere il palo, che crea notevole disagio alla circolazione e di installare la mensola nel muro dell’edificio del Greco, facendo notare che:

“…  non pare che ora debba  più tollerarsi, che per difetto dell’assenso di un solo che unico rimane restio, si debba vedere in perpetuo una deformità nazionale a danno della comodità dei cittadini ed a privilegiato riguardo di un solo”.

Nella sorprendente storia del rapporto di Lecce con l’elettricità, il rifiuto di Pasquale Greco può essere quindi considerato l’inizio di quella lotta all’inquinamento elettromagnetico esplosa in anni recenti, che costituirebbe quindi un altro primato di Lecce.

INDICE-LIVIO

INDICE-LIVIO2

Postfazione

Sono passati quarantacinque anni dal quel fatidico 1967 in cui fu posta la prima pietra della Facoltà di Scienze Matematiche Fisiche e Naturali dell’Università di Lecce. Molto cammino è stato fatto da allora.

Dalle prime ricerche in fisica teorica e in matematica, cui si aggiunsero da subito i primi timidi esperimenti in fisica dei materiali, si passò allo studio delle applicazioni dei fasci di elettroni e dell’energia solare, organizzando nel 1978 a Castro la prima scuola estiva italiana sulle celle solari. Nel 1979 si aprì il campo di ricerche in biologia, con particolare attenzione alla biologia marina, e nel 1985 la sonda Giotto, che andò all’appuntamento con la cometa di Halley, portava un analizzatore di polvere costruito in collaborazione tra le Università di Lecce e di Bari.

Alla facoltà di Scienze si sono aggiunti la Facoltà di Ingegneria e alcuni istituti del Consiglio Nazionale delle Ricerche. Sono state organizzate decine di scuole estive e di convegni, che hanno fatto conoscere il Salento a centinaia di ricercatori italiani e stranieri.

Come messo in evidenza nel volume Per una storia della scienza e tecnologia nel Salento dall’Unità d’Italia ad oggi, recentemente pubblicato, il dinamico sviluppo dell’attività di ricerca ha oggi collocato il Salento nel panorama scientifico nazionale e internazionale in numerosi settori: dalla fisica teorica alla matematica, dalla biologia marina alla geofisica, dalla zoologia alla botanica, dalla fisica dell’atmosfera all’informatica, dall’energetica all’ingegneria dei materiali, dalle biotecnologie alle nanotecnologie, dall’ecologia alla fisiologia, dall’astronomia alla fisica cosmica, dalla chimica alla conservazione delle opere monumentali.

E’ stato ricostituito l’Orto Botanico ed è stato realizzato il Museo dell’Ambiente, che insieme al Museo di Biologia Marina “Pietro Parenzan” a Porto Cesareo e all’Osservatorio su Ecologia e Salute degli Ecosistemi Mediterranei a Otranto, costituiscono un efficace centro di riferimento per la formazione e l’educazione ambientali per tutta la collettività.

E non va dimenticato il notevole contributo dato allo sviluppo della didattica: molti degli insegnanti di discipline scientifiche nelle scuole salentine e di altre regioni si sono formati a Lecce.

Nel frattempo la Vecchia Signora si è rimessa in ghingheri. Ha scosso via dai suoi abiti la polvere e le ragnatele e ha ridato amido ai merletti, presentandosi nel pieno della sua nobiltà ai visitatori che, ogni anno più numerosi, vengono a trovarla da ogni parte del mondo.

Il futuro anche scientifico di questa parte d’Italia è molto promettente, nonostante le nubi di origine politica ed economica che sembrano addensarsi inesorabilmente sul mondo della scuola e della ricerca, ma sarebbe un grave errore trascurare il Barocco!

Livio Ruggiero – 2014