Se una stella muore – Domenico Licchelli

Il cielo è il tuo laboratorio, si dice agli aspiranti astrofisici. Un laboratorio un po’ speciale però, in cui molti fenomeni avvengono quando più gli aggrada, senza alcun preavviso, non sappiamo se confidando nel fatto che, in ogni caso, lì su quell’anonimo pianeta di un’altrettanto anonima stella della Via Lattea ci sarà qualcuno abbastanza attento da notarlo. Fatto sta che, di tanto in tanto, il cielo ci sorprende. Questa volta il regalo è una splendida supernova in una galassia vicina, M82, nell’Orsa Maggiore.

This mosaic image of the magnificent starburst galaxy, Messier 82 (M82

This mosaic image of the magnificent starburst galaxy, Messier 82 (M82) is the sharpest wide-angle view ever obtained of M82. It is a galaxy remarkable for its webs of shredded clouds and flame-like plumes of glowing hydrogen blasting out from its central regions where young stars are being born 10 times faster than they are inside in our Milky Way Galaxy.
Credit: NASA, ESA and the Hubble Heritage Team STScI/AURA). Acknowledgment: J. Gallagher (University of Wisconsin), M. Mountain (STScI) and P. Puxley (NSF).

Pur essendo sicuramente una delle galassie più fotografate, a quanto pare nessuno si è accorto, per giorni, che tra le sue bande di polvere stava emergendo una nuova stella. Martedì 21 Gennaio alle 19:20 UTC un gruppo di studenti dell’University College di Londra, guidati da Steve Fossey, era impegnato in una sessione osservativa didattica quando ha notato qualcosa di strano in quella galassia. Dopo un rapido controllo delle immagini di archivio, con l’eccitazione ormai a livelli stratosferici, ha diramato un’allerta mondiale per comunicare la scoperta e far osservare con tutti gli strumenti disponibili la nuova stella ospite.

This comparison image shows a supernova suddenly appearing in the nearby galaxy M82.

UCL / Univ. of London Obs. / S. Fossey / B. Cooke / G. Pollack / M. Wilde / T. Wright
This comparison image shows a supernova suddenly appearing in the nearby galaxy M82.

Le supernovae, questo il nome delle stelle che esplodono con una tale violenza da diventare perfino più luminose dell’intera galassia che le ospita, rappresentano una sorta di sacro Graal per gli astrofisici ed in special modo per i cosmologi. Proprio studiando le supernovae di tipo Ia, come questa in M82, si è avuto la conferma che l’Universo non solo si sta espandenso ma sta addirittura accelerando. Essendo fenomeni relativamente rari, in particolare in galassie vicine, ci si spiega facilmente questa sorta di chiamata alle armi generale. E’ uno di quei casi in cui ogni nuova misura è importante, sia per confermare i modelli interpretativi che sono stati elaborati finora, sia per conoscere più in dettaglio e con maggior precisione i meccanismi e i processi in atto in tutte le loro fasi. Inoltre, questa supernova ha almeno quattro punti di forza in più:

  1. è in una galassia lontana appena 12 milioni di anni-luce e di conseguenza è abbastanza luminosa e relativamente facile da osservare perfino con piccoli telescopi
  2. il suo spettro è fortemente arrossato segno che la sua luce deve attraversare dense nubi di polvere galattica prima di giungere a noi. Studiarlo in dettaglio permetterà di capire meglio come avviene l’estinzione della radiazione luminosa, fatto di vitale importanza per calibrare correttamente la distanza di analoghe supernovae dell’universo lontano
  3. dai confronti con altri spettri d’archivio sembrerebbe che sia ancora nella fase di salita verso il massimo di luminosità che dovrebbe raggiungere entro le prossime due settimane
  4. ci ha fatto il grande piacere di esplodere quando la galassia inizia la sua fase di migliore osservabilità (in realtà è esplosa 12 milioni di anni fa ma la sua luce ci è arrivata solo adesso), per cui è possibile seguirla per parecchie ore di seguito in ogni notte serena.
This comparison image shows a supernova suddenly appearing in the nearby galaxy M82. BLOCK

Keep in mind this image is stretched in its brightness; the supernova is considerably brighter than any part of the galaxy and as it brightens it may outshine billions of stars in M82.
Adam Block/Mount Lemmon SkyCenter/University of Arizona

This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our Sun, or a giant star.

This is a Hubble Space Telescope composite image of a supernova explosion designated SN 2014J in the galaxy M82. At a distance of approximately 11.5 million light-years from Earth it is the closest supernova of its type discovered in the past few decades. The explosion is categorized as a Type Ia supernova, which is theorized to be triggered in binary systems consisting of a white dwarf and another star — which could be a second white dwarf, a star like our Sun, or a giant star.

Naturalmente la febbre da supernova ha contagiato anche me. Combattendo con le nuvole in transito e con un seeing abbastanza pietoso, la notte scorsa ho acquisito uno spettro che mostra chiaramente le principali caratteristiche fisiche già riscontrate nelle riprese dei grandi osservatori professionali, l’evidente arrossamento, la profonda banda dell’SiII da cui è stato possibile ricavare una velocità di espansione di circa 12000km/s, e la netta riga di assorbimento del Sodio neutro, di probabile origine interstellare.

SPETTRO TYPE-IA-SUPERNOVA-2014J-IN-M82

Le analisi degli spettri e i modelli teorici insegnano molto. Si deduce che l’esplosione di supernova dà il via ad una furiosa nucleosintesi con la combustione dell’Ossigeno e del Silicio che produce, per esempio, il Calcio delle nostre ossa, il Ferro nel nostro sangue, il Titanio, il Cromo, il Vanadio e via discorrendo. Questo miscuglio di elementi pesanti viene poi scagliato nello spazio insieme agli altri elementi chimici già creati pazientemente dalla stella progenitrice per milioni di anni. La morte della stella, lungi dall’essere la fine della storia, diventa invece la sorgente primaria degli elementi chimici più complessi che inseminerà, letteralmente, lo spazio circostante. Quel materiale prima o poi si addenserà nuovamente per creare una nuova stella con la sua corte di pianeti, su cui può accadere che compaiano forme di vita più o meno evolute ed intelligenti.

This Chandra image of the Tycho contains new evidence for what triggered the original supernova explosion.

This image of Tycho’s supernova remnant contains striking evidence for what triggered the original supernova explosion, as seen from Earth in 1572. Tycho was formed by a Type Ia supernova, a category of stellar explosion used in measuring astronomical distances because of their reliable brightness. Low and medium energy X-rays in red and green show expanding debris from the supernova explosion. High energy X-rays in blue reveal the blast wave, a shell of extremely energetic electrons. Also shown in the lower left region of Tycho is a blue arc of X-ray emission. Several lines of evidence support the conclusion that this arc is due to a shock wave created when a white dwarf exploded and blew material off the surface of a nearby companion star.
Credit: NASA/CXC/Chinese Academy of Sciences/F. Lu et al

Adesso capite il nostro accanimento. Siamo figli delle supernovae. Studiare la loro morte in realtà serve a farci capire qualcosa di più della nostra nascita.

Domenico Licchelli – 2014

Un uragano in una bolla di sapone – Domenico Licchelli

Si dice che gli scienziati siano in realtà degli adulti che hanno conservato la curiosità e la meraviglia dei bambini. Non ci credete? Ecco un esempio. Alzi la mano chi non ha giocato almeno una volta con le bolle di sapone.

800px-Soap_bubble_sky

From Wikimedia Commons

Le spettacolari iridescenze sulla superficie e la vita effimera che le contraddistinguono sono un’attrazione a cui è difficile resistere, a prescindere dalla propria età anagrafica. Sicuramente meno noto è che fior di matematici e fisici le hanno studiate e continuano a farlo, per comprendere a fondo alcuni fenomeni molto complessi riguardanti la topologia, la teoria del caos, la teoria delle variazioni etc. Lord Kelvin si spinse a dire: “Fate una bolla di sapone e osservatela: potreste passare tutta la vita a studiarla”. Esagerato? Non proprio. Pensate, per esempio, ad una caratteristica evidente delle bolle, cioè il fatto di avere una forma perfettamente sferica. Beh non è un caso. La sfera è, in effetti, la superficie minima che racchiude un determinato volume, così come la circonferenza è la curva chiusa di lunghezza minore se paragonata al perimetro di un qualunque poligono avente la stessa area del cerchio racchiuso. E che dire poi degli spettacolari colori che si osservano sulla superficie delle bolle, sempre cangianti e in movimento, prodotti dalla riflessione e dall’interferenza della luce con la sottile parete di acqua saponata. Da tempo i fisici dell’atmosfera hanno anche notato sorprendenti analogie tra questi fenomeni e il comportamento delle correnti convettive atmosferiche. Adesso un gruppo di ricercatori capitanati da T. Meuel dell’Università di Bordeaux, ha realizzato un esperimento utilizzando una semibolla posizionata su un dispositivo in grado di riscaldarla dal basso e di metterla in rotazione.

In pochissimo tempo si è generato un vortice che ha immediatamente mostrato comportamenti simili ai grandi vortici planetari, si pensi alla Grande Macchia Rossa gioviana, ma anche agli uragani terrestri che sono parenti prossimi seppur su scala enormemente inferiore.

480px-Evolution_of_GRShurricane_depth

Visualization of hurricane Floyd approaching the coast of Florida.
Data from the NOAA GOES satellite. Images produced by Hal Pierce.

Per esempio, si è visto che i vortici aumentano di intensità fino ad un valore massimo per poi iniziare a decadere, similmente a quanto avviene alle tempeste tropicali (TC).

Per passare poi da un’analisi qualitativa ad una quantitativa hanno elaborato un modello matematico che, seppur relativamente semplice, si è dimostrato in grado di riprodurre in maniera molto interessante il comportamento di 171 TC del Pacifico e dell’Atlantico.

soap-hurricane

(d) Image of the full bubble with a vortex being formed by a large thermal plume. (e) A zoom on the vortex, the colors are interference colors of white light being reflected by the thin water layer constituting the bubble.

Restano ancora da capire molti dettagli ma è un significativo passo avanti nella direzione di predire con sufficiente precisione il percorso e l’intensità degli uragani che, nonostante gli enormi progressi compiuti negli ultimi anni, rimane ancora un obiettivo da raggiungere. Il tutto giocando con una bolla di sapone.

Dobbiamo anche confidare un poco in ciò che Galileo chiamava la cortesia della Natura, in grazia della quale talvolta da parte inaspettata sorge un raggio di luce ad illuminare argomenti prima creduti inaccessibili alle nostre speculazioni […]. Speriamo adunque. E studiamo.”  G. V. Schiaparelli, in Il pianeta Marte, 1893

Domenico Licchelli – 2014

Per saperne di più:

  • Intensity of vortices: from soap bubbles to hurricanes – T. Meuel et al. SCIENTIFIC REPORTS | 3 : 3455
  • Michele Emmer, Bolle di sapone: tra arte e matematica, Bollati Boringhieri, 2009

10^30 – Domenico Licchelli

Quasi fosse una sorta di mantra da ripetere periodicamente, quando uno scienziato è chiamato ad esprimersi sulle motivazioni che lo hanno spinto a scegliere quel mestiere, è molto probabile che ci si senta rispondere che, all’origine di tutto, c’è stata una qualche forma di Bellezza che l’ha impressionato in un certo momento della sua infanzia o adolescenza. Di solito, questa affermazione lascia alquanto sconcertati, soprattutto in quei casi in cui vengono citati improbabili, così sembra ai non addetti ai lavori, fenomeni fisici, equazioni matematiche e via discorrendo. Finchè non si posseggono i giusti strumenti mentali è, in effetti, difficile riuscire a condividere certi entusiasmi. Tuttavia, madre Natura ha inventato un sistema straordinario per permettere a tutti quantomeno di cominciare a diventare consapevoli dell’eccezionalità dello spettacolo che fluisce initerrottamente sotto ai nostri sensi. Potremmo definirla la Bellezza di scala, ossia quella particolare combinazione di forme, colori, dimensioni, significati profondi, che permea tutto il nostro Universo, a qualunque livello, dall’atomo ai super-ammassi di galassie, passando per gli organismi viventi. 10^30 è circa l’ordine di grandezza che intercorre tra un batterio e l’ammasso di galassie della Vergine. E’ un numero assolutamente folle ed inconcepibile secondo il nostro metro quotidiano, ma diventa comprensibile e perfino gestibile, se ci si dota di una visione scientifica e degli strumenti che la Scienza ha messo a disposizione.

Ciò che faremo in questo blog è proprio un esperimento volto a mostrare per immagini, mentali e fotografiche, la Bellezza che ci circonda, con l’auspicio che possa aprire nuovi orizzonti, a noi che lo elaboriamo ed eseguiamo e a voi che pazientemente ci leggete.

Visione in falsi colori al microscopio elettronico a scansione, della struttura ordinata dei cristalli di Carbonato di Calcio

Visione in falsi colori al microscopio elettronico a scansione, della struttura ordinata dei cristalli di Carbonato di Calcio che compongono le pareti di una Ampullinopsis crassatina, una conchiglia marina estinta che, nonostante la veneranda età (l’esemplare in questione è datato a circa 25 milioni di anni, nel periodo Oligocenico), conserva ancora tracce del colore originario.

Bolle di Ossigeno prodotte da una reazione chimica su un tessuto trattato con Blu di Metilene, viste al microscopio ottico

Bolle di Ossigeno prodotte da una reazione chimica su un tessuto trattato con Blu di Metilene, viste al microscopio ottico. Il fenomeno, apparentemente caotico, si sviluppa, invece, in maniera tale da creare una struttura ordinata e coerente

Cristalli osservati al microscopio ottico in luce polarizzata.

Cristalli osservati al microscopio ottico in luce polarizzata. Le proprietà ondulatorie della luce unite alla struttura tridimensionale dei cristalli generano delle spettacolari iridescenze, variabili per colorazione ed intensità secondo gli angoli di incidenza della luce

polline---microscopio

Polline osservato al microscopio ottico. Le dimensioni tipiche sono comprese tra 10 e 100 micron

ovatura-janolusT

Questa sorta di prezioso ricamo è in realtà l’ovatura di un nudibranchio. L’intera struttura, tipicamente di qualche cm al più, può contenere diversi milioni di embrioni

protula

“Sei brutto come un verme” è un’affermazione decisamente difficile da affibbiare ad un verme marino. L’esemplare qui ritratto è una Protula sp. col suo bel ciuffo branchiale dispiegato, che utilizza sia per respirare che per cibarsi filtrando l’acqua.

 Ophrys passionis var. garganica)

Questo misterioso fiore è una orchidea spontanea (probabilmente una Ophrys passionis var. garganica) ed è una delle 32 specie finora censite nel Salento

cormorani-sunset

Cirri d’alta quota, piccoli fractus e nubi stratiformi incendiate dagli ultimi raggi del Sole fanno da sfondo ad una coppia di cormorani (Phalacrocorax carbo), in volo verso il loro domicilio notturno.

rocky-monster

L’incessante carsismo e l’azione meccanica delle onde scavano la roccia sommersa e modellano animali mitologici nei friabili calcari. Una pletora di organismi marini fanno poi a gara per rivestire la nuda roccia coi colori più vivaci

black-sea STAR TRAIL

Placidamente addormentato come un enorme rettile corazzato coccolato dallo sciabordio delle onde, questo spuntone di roccia calcarea da milioni di anni assiste alle lente rotazioni del cielo sovrastante

Luna Rossa 2001

La Luna, la nostra fedele compagna, qui impreziosita dalle calde tonalità prodotte durante un’eclisse dagli strati alti della nostra atmosfera, quasi a rimarcare il profondo legame che la unisce alla Terra

La Via Lattea nel Cigno

La Via Lattea nel Cigno, una delle zone più spettacolari della nostra galassia. Deneb la stella più luminosa nell’immagine è a circa 2600 anni-luce di distanza. Le intricate volute di gas, principalmente idrogeno, e le spesse nubi di polvere disegnano fantastici paesaggi trapuntati di stelle, molte delle quali arricchite di complessi sistemi planetari

NGC5907ugr

La splendida galassia a spirale NGC5907 vista quasi di taglio, qui ripresa dal Large Binocular Telescope. La luce di questo Universo-isola ha impiegato oltre 50 milioni di anni per raggiungerci. In termini cosmologici siamo ancora dentro al cortile di casa, ma su scala umana è già vertigine pura.

Domenico Licchelli – 2014

La Via Lattea: la nostra isola nell’Universo – Anna Galiano

Estate è sinonimo di serate all’aperto, di chiacchiere con gli amici e, per gli appassionati di Astronomia, di caccia al tesoro celeste lungo la Via Lattea. Il Sistema Solare fa parte di un grande ammasso di stelle, materiale interstellare e polveri, noto come galassia, che nel nostro caso specifico è, appunto, la Via Lattea. Questa è una galassia a spirale barrata con un diametro maggiore di 100000 a.l. (anni luce); il Sole con i pianeti che gli ruotano attorno, è localizzato in uno dei suoi bracci. La Via Lattea attraversa il nostro cielo notturno come una banda biancastra, poiché le stelle che la compongono le conferiscono la debole nebulosità che ha dato origine al suo nome. Con una estensione di circa 30° nella nostra sfera celeste, la debole luce della Via Lattea può venire facilmente mascherata dall’inquinamento luminoso o dalla luce della Luna. Vi sono, inoltre, alcune zone scure all’interno della banda dovute alla presenza di materiale interstellare che blocca la radiazione luminosa proveniente dalle sorgenti luminose retrostanti.

Via Lattea estivaLa conferma che la nostra galassia è composta da stelle si è avuta nel 1610 quando Galileo Galilei puntò il proprio telescopio e scoprì che l’aspetto nebuloso era in realtà prodotto da una moltitudine di astri molto vicini tra loro, ben al di sotto del potere risolutivo dell’occhio nudo. Indagini moderne stimano la presenza di un numero compreso tra 100 e 400 miliardi di stelle al suo interno. Agli inizi del XX secolo le osservazioni condotte dall’astronomo e astrofisico statunitense Edwin Hubble hanno dimostrato che la Via Lattea è solo una delle tante galassie presenti nell’Universo.

La reale struttura della nostra galassia è ancora oggetto di discussione. Si è certi che questa sia una galassia con un nucleo barrato dalla quale si dipartono dei bracci a spirale logaritmica che racchiudono gas, polveri e stelle, dando origine, così, al disco galattico ed in particolare alla regione denominata thin disk, laddove avvengono i maggior processi di formazione stellare. Nella parte centrale del disco vi è il centro galattico, formato da una gran quantità di vecchie stelle disposte in maniera sferoidale, le quali generano una protuberanza (bulge). Visto dalla Terra il centro galattico, che risulta essere la regione più luminosa della Via Lattea, si trova in corrispondenza della costellazione del Sagittario, in prossimità della sorgente denominata Sagittarius A* caratterizzata da una forte emissione radio. Il moto dei corpi attorno ad essa tradisce la sua natura di oggetto compatto ma con una massa di 4.1-4.5 milioni di volte la massa del Sole, ossia un buco nero supermassivo. L’anticentro galattico, la parte opposta al centro galattico, si trova nella costellazione dell’Auriga.

Gli studi per comprendere la struttura della Via Lattea iniziarono negli anni ‘50 tramite l’indagine spettrale di alcune stelle di tipo O e B (stelle con elevate temperature superficiali) presenti nei bracci a spirale di alcune galassie esterne. I risultati maggiormente soddisfacenti si sono ottenuti però, con le osservazioni nella banda radio. Il mezzo interstellare presente nella nostra galassia è prevalentemente costituito da Idrogeno allo stato neutro, otticamente non osservabile, ma visibile nel radio. Lo stato neutro dell’Idrogeno corrisponde ad un protone e ad un elettrone che occupa lo stato più basso in energia corrispondente al livello 1s. Dall’interazione tra lo spin dell’elettrone e quello del protone tale livello 1s si sdoppia in due sottolivelli: quello con energia maggiore è descritto da elettrone e protone avente lo spin nello stesso verso (Spin totale pari a 1), quello con energia inferiore presenta elettrone e protone con spin opposto (Spin totale nullo). L’elettrone transitando dal livello con energia maggiore a quello con energia minore emette un quanto di energia (fotone) alla lunghezza d’onda pari a 21 cm. Questo è ciò che fu osservato dai radiotelescopi, permettendo così di evidenziare la presenza di Idrogeno e mappare la struttura della nostra galassia. Questa transizione è molto rara, ma essendo lo spazio interstellare costituito da una gran quantità di atomi di Idrogeno, tale riga è facilmente osservabile. La riga di emissione a 21 cm dell’Idrogeno ha permesso di identificare i due bracci principali che costituiscono la Via Lattea: il Braccio di Perseo e il Braccio Scudo-Centauro. Vi sono dei bracci complementari, come il Braccio del Cigno (parte esterna del Norma Arm) e il Braccio del Sagittario ed alcuni secondari, come Carina, e il Braccio di Orione, sede oltre che della Nebulosa di Orione da cui prende il nome, anche del Sistema Solare, il quale giace nella parte interna del braccio ad una distanza di circa 30000 a.l. dal centro galattico.

Dal confronto tra i risultati ottenuti nel campo ottico (utilizzando gli ammassi aperti di giovani stelle che ben descrivono la struttura esterna dei bracci di una galassia a spirale) e quelli acquisiti nell’indagine nelle onde radio (tramite addensamenti di gas molecolare CO, composto da Carbonio e Ossigeno) si è analizzato il Braccio del Cigno e il Braccio di Perseo. Il primo è ben tracciato sia dalle componenti stellari che dagli addensamenti di CO, mentre il Braccio di Perseo è individuato solo dalle componenti CO. La mancanza di tracce stellari nella parte esterna del Braccio di Perseo indica che il braccio Locale, ossia il Braccio di Orione lo stia lentamente perturbando. Si è inoltre notato, in un primo momento, che lungo il piano galattico, ad una distanza di circa 45000 a.l. dal centro galattico, in direzione dell’anticentro, la densità di materiale termina quasi bruscamente. In realtà, osservazioni più dettagliate hanno evidenziato che questa interruzione la si nota in tutte le direzioni; probabilmente tale comportamento è dovuto ad una deformazione del disco galattico. L’assenza di materiale a quelle distanze è solo un’illusione, poiché il disco galattico a circa 43000- 49000 a.l. subisce una deformazione verso il basso. Pertanto per osservare il prolungamento della galassia bisogna considerare latitudini inferiori a 0° rispetto all’equatore galattico. Inoltre, a distanza di circa 65000 a.l. dal centro galattico, sono state osservate stelle giovani, suggerendo che tale zona è una regione attiva di formazione stellare, tutt’altro che priva di materiale.

Gli ultimi risultati, in conclusione, suggeriscono che la nostra galassia abbia in realtà un diametro maggiore di quello sinora conosciuto, circa 130000 a.l..NGC6744Il disco galattico è circondato da astri e ammassi globulari che si estendono per centinaia di migliaia di anni-luce secondo una disposizione sferica, generando l’alone galattico. Il Chandra X-ray Observatory ha dimostrato che nell’alone galattico vi è una grande quantità di gas caldo con temperature comprese tra 1 milione e 2.2 milioni di gradi Kelvin e una massa confrontabile con la massa delle stelle nella galassia.

Una simulazione al computer molto dettagliata realizzata nel 2011 fornisce una spiegazione soddisfacente sulla struttura a spirale della Via Lattea, che sarebbe prodotta principalmente dall’interazione gravitazionale con la vicina Galassia  Ellittica Nana del Sagittario, che pian piano è distrutta ed assorbita dalla nostra galassia.

La Via Lattea, la Galassia di Andromeda, di cui ci occuperemo in un secondo momento data la sua importanza, e altre 70 galassie circa, formano il Gruppo Locale, che insieme ad altri 5 gruppi di galassie, appartiene all’Ammasso della Vergine, componente di una struttura ancora più complessa ed estesa, nota come Superammasso della Vergine. Attorno alla Via Lattea ruotano due galassie più piccole e delle galassie nane, tra le quali la Grande e la Piccola Nube di Magellano. Nell’Universo locale vi sono delle galassie simili alla Via Lattea, ma ce n’è una in particolare con la quale mostra più di un elemento in comune, NGC 6744 nella costellazione del Pavone a circa 30 milioni di a.l. di distanza. La galassia NGC 6744 ha la stessa struttura a spirale, con un diametro pari a 175000 a.l.. Inoltre, una galassia più piccola, NGC 6744A, confrontabile con la Grande Nube di Magellano, le ruota attorno. Per queste somiglianze la galassia a spirale NGC 6744 viene vista come un “fratello maggiore della Via Lattea”,  il “Big brother to the Milky Way”.    

La costellazione del Cigno – Anna Galiano

Una tra le costellazioni facilmente riconoscibili e dominanti nelle notti estive boreali è la costellazione del Cigno. Come suggerisce il nome, si presenta come un cigno ad ali spiegate che sovrasta uno sfondo costellato da molte deboli stelle della Via Lattea, osservabili in assenza di inquinamento luminoso.
Una parte della costellazione, formata dalla coda e dall’ala occidentale è circumpolare, mentre diviene completamente visibile da giugno (a Nord-Est) a novembre (a Nord-Ovest).
Via Lattea nel CignoIl corpo principale del Cigno è formato da cinque stelle di luminosità intensa, che conferiscono a questa costellazione il nome alternativo di “Croce del Nord”, in opposizione alla “Croce del Sud” visibile nell’emisfero australe.
La coda del Cigno è individuata dalla stella più luminosa della costellazione, Deneb (α Cygni), di magnitudine 1.25 e distante da noi 3000 anni luce. Deneb, insieme con i due astri più brillanti delle costellazioni dell’Aquila e della Lira, rispettivamente Altair e Vega formano un asterismo conosciuto come “Triangolo estivo”, il secondo dopo il “Grande Carro” a venir usato come orientamento nel cielo.

L’ala occidentale della costellazione è individuata da Ruch (δ Cygni), una stella tripla dalla magnitudine complessiva di 2.9, mentre nell’ala orientale si trova Gienah (ε Cygni), una stella gigante di magnitudine 2.45. Le due ali si uniscono su Sadr (ɣ Cygni), un’enorme stella con un raggio di circa 150 volte quello del Sole.
La testa del Cigno è sormontata da Albireo (β Cygni), una tra le stelle doppie più note, con una magnitudine complessiva di 3.35. I due astri, la cui separazione angolare è di 35’’, hanno colori differenti e questo permette di distinguerli anche con telescopi di ridotta risoluzione: la stella primaria ha un colore arancio mentre la secondaria è bianco-azzurra.
Un’altra stella degna di nota è 61 Cygni, distante 11 anni luce: è stata la prima stella doppia di cui è stata calcolata la distanza dalla terra con una buona precisione, avvenuta ad opera di Bessel nel 1838.
Vi è poi 16 Cygni, un sistema stellare triplo composto da due stelle simili al Sole, delle nane gialle (16 Cygni A e 16 Cygni B) e da una nana rossa (16 Cygni C). E’ stato scoperto un pianeta extrasolare orbitante attorno a 16 Cygni B con una massa pari a 1.5 volte quella di Giove.
Poiché questa costellazione giace sulla Via Lattea, racchiude altri affascinanti e misteriosi oggetti celesti:

  • nebulose, tra cui la NGC 6888 (Nebulosa Crescente), NGC 6960 (Nebulosa Velo) e NGC 7000 (Nebulosa Nord America), distante 3° da Deneb e con una luminosità molto tenue;
  • ammassi aperti, come M29 e M39;
  • Cygnus X-1, una sorgente continua di raggi X scoperta negli anni ’70. Tra le varie ipotesi vi è quella che sostiene la presenza di un buco nero nel suo centro.

Vi è una regione oscura che da Deneb si estende parallelamente lungo il corpo del Cigno, nota come “Fenditura del Cigno” (Cygnus Rift). Questa è la conseguenza della presenza di materiale interstellare, come polveri e gas, che assorbono la radiazione luminosa proveniente dalle stelle restrostanti.
Il nome della costellazione è legato alla mitologia greca, più precisamente al mito di Zeus e Leda. Una di queste versioni narra che il re degli dei, invaghitosi di Leda, moglie del re di Sparta Tindareo, volle vincere le resistenze della donna trasformandosi in cigno. Da quell’unione Leda partorì Castore e Polluce, Clitemnestra ed Elena. Castore e Polluce sono le stelle principali della costellazione dei Gemelli di cui ci occuperemo in futuro.
Per visualizzare le mappe e trovare gli oggetti celesti consigliati è opportuno dotarsi di un planetario software come Stellarium