E’ tempo di osservare Marte – Giulia Alemanno

Marte, il quarto pianeta a partire dal Sole, è dopo Venere il pianeta più vicino alla Terra. Anche noto come Pianeta Rosso per la sua caratteristica colorazione, Marte orbita alla distanza media di 1.524 u.a. dal Sole, con un periodo di rivoluzione di 1.88 anni terrestri e presenta un moto di rotazione attorno al suo asse della durata di 24h37m22.6s, molto vicino al valore terrestre di 23h56m04s. Un’ulteriore analogia tra Marte e Terra riguarda l’asse di rotazione dei due pianeti. Per il Pianeta Rosso tale asse presenta un’inclinazione sul piano orbitale di 25.19°, valore di poco superiore rispetto a quello terrestre pari a 23.45°. Ciò determina la presenza su Marte di un ciclo stagionale analogo a quello terrestre, anche se le stagioni marziane hanno una durata doppia rispetto alle nostre a causa del maggiore periodo orbitale rispetto a quello terrestre.  A differenza degli altri pianeti del Sistema Solare Marte ha quindi molte caratteristiche in comune con la Terra, motivo per il quale è stato sempre associato agli extra-terresti, in questo caso meglio noti come marziani.

Il mito dei marziani è nato in seguito alle osservazioni dell’astronomo italiano Giovanni Schiaparelli che studiò Marte dall’osservatorio di Brera negli anni tra il 1877 e il 1881. Egli si accorse della presenza di una serie di linee scure sulla superficie del pianeta che chiamò “canali” interpretandoli come mari. In determinati periodi i “canali” sembravano sdoppiarsi e la superficie del pianeta pareva cambiare il suo colore.  inoltre, il termine canali utilizzato da Schiapparelli venne tradotto in inglese come “canals”, termine che indica opere artificiali e non “channels”, che invece denota strutture naturali. Queste due osservazioni alimentarono l’immaginazione dell’uomo portando alcuni astronomi a pensare che si trattasse appunto di canali artificiali creati da ipotetici abitanti del pianeta con lo scopo di irrigare i loro campi. Tutti iniziarono così a credere che Marte fosse realmente abitato. Nel frattempo Vincenzo Cerulli, un altro astronomo italiano, dal suo osservatorio privato di Teramo scoprì la vera origine dei “canali”. Cerulli si accorse che si trattava di semplici illusioni prodotte dalla mente dell’uomo proprio come accade quando guardando le nuvole scorgiamo in esse forme e figure particolari frutto della nostra immaginazione. D’altra parte se i canali visti da Schiaparelli fossero stati reali si sarebbero dovuti vedere meglio all’avvicinarsi del pianeta cosa che invece non accadeva. Grazie all’utilizzo di sonde orbitanti attorno al Pianeta Rosso le osservazioni di Cerulli furono confermate.

Mars Map 1890 Giovanni Schiaparelli

Marte non presenta canali artificiali ne’ ospita forme di vita evolute. Tuttavia l’interesse per il Pianeta Rosso continua, citando Schiaparelli “Vi è in Marte un mondo intiero di cose nuove da studiare, eminentemente proprie a destare la curiosità degli osservatori e dei filosofi, le quali daranno da lavorare a molti telescopi per molti anni.” Vediamo quali sono le caratteristiche di questo affascinante pianeta. Nonostante le analogie elencate, esistono anche diverse differenze tra Marte e il nostro pianeta. Il Pianeta Rosso risulta essere più piccolo e meno denso della Terra. La sua densità media di 3.93 g/cm^3 è inferiore al valore terrestre di 5.52g/cm3  e la sua massa pari a 6,4185 ×1023kg è un decimo di quella terrestre. Da tali valori scaturisce che Marte ha una percentuale di ferro inferiore a quella della Terra e quindi un nucleo più piccolo.  inoltre, a causa della sua piccola massa, l’accelerazione di gravità sul pianeta è di 3.71m/s2 e la velocità di fuga è pari a 5.03km/s. Il valore di questa velocità, non sufficientemente elevata per impedire ai gas atmosferici di abbandonare il pianeta, ci permette di spiegare la rarefazione dell’atmosfera marziana (Carbognani, 1999).

Marte non è perfettamente sferico: il suo appiattimento è maggiore di quello della Terra. La differenza di 20 km circa tra raggio polare e raggio equatoriale dipende principalmente dalla rotazione del pianeta.  inoltre, Marte non è dotato di campo magnetico globale di tipo dipolare come la Terra, ma sono stati osservati (principalmente nell’emisfero sud del pianeta) campi magnetici locali che per certi aspetti costituiscono l’analogo delle anomalie magnetiche terrestri. Tali campi, rilevati sulla superficie di Marte, si pensa siano il frutto di una magnetizzazione residua che risale al periodo di raffreddamento della crosta, quando il nucleo del pianeta era ancora in grado di generare un campo magnetico per effetto dinamo (Carbognani, 1999). Marte ruota attorno al Sole con un’eccentricità orbitale di 0.0934 che fa sì che la distanza Terra – Marte vari in modo significativo da un valore di d ~ 55 × 106 km, quando l’opposizione avviene al perielio, fino ad un valore di d ~ 92 × 106 km, quando l’opposizione avviene all’afelio (Bakouline et al., 1975). Gli astronomi chiamano questi eventi opposizione perché Marte e il Sole vengono a trovarsi su lati opposti del cielo. Essi rappresentano  inoltre, i momenti migliori per osservare il Pianeta Rosso che da puntino rosso man mano che si avvicina inizia a svelare i dettagli della sua superficie che risultano visibili anche da piccoli telescopi. Proprio in questi giorni Marte si è avvicinato sempre di più alla Terra, riducendo la sua distanza di 300 km ogni minuto fino a raggiungere la distanza minima di circa 92 × 106 km il 14 Aprile. E’ quindi il momento giusto per osservare Marte.

Figura 1 – Immagini del Pianeta Rosso nel mese di Marzo 2014. Si può notare l’aumento delle dimensioni del pianeta e dei dettagli visibili della sua superficie. All with the same equipment set-up. (LX200ACF 12 in. OTA, CGE mount, Flea3 Ccd, TeleVue 3x barlows, Astronomik RGB filter set.)  

Non sarà difficile trovare Marte in cielo in queste notti. Il Pianeta Rosso sarà nella costellazione della Vergine poco distante da Spica. Osservando il pianeta Rosso in questi giorni possiamo notare come esso sia estremamente variegato; l’osservazione al telescopio rileva la presenza sulla sua superficie di:

  • Calotte polari – macchie bianche che si formano attorno ai poli in autunno e scompaiono all’inizio dell’estate;

  • Continenti (anche detti Deserti) – sono delle distese omogenee di un caratteristico colore arancione chiaro che ricoprono i 2/3 della superficie marziana. Tali zone sono formate da un terreno relativamente liscio su cui si è depositata una spessa coltre di polvere. Al contrario delle calotte polari i continenti non sono soggetti a variazioni stagionali ma possono subire cambiamenti nel corso dei secoli;

  • Mari – regioni scure che presentano un colore ocra – marrone che si estendono per un 1/3 della superficie del pianeta e corrispondono ad aree piene di crateri dove il ricoprimento di polvere non è continuo. Ciò lascia intravedere il colore scuro della roccia sottostante. Anche i mari, così come le calotte polari, variano con il passare delle stagioni. Risulta infatti che il contrasto tra regioni chiare e scure sia minimo durante l’inverno. Tali variazioni sono legate allo spostamento delle polveri generato dall’azione meccanica dei venti. Si nota una sorprendente disparità tra l’emisfero settentrionale e quello meridionale. Quest’ultimo è a quota elevata, predominano infatti gli altopiani (highlands), ed è fortemente craterizzato (indizio di una superficie antica). L’emisfero settentrionale è invece costituito da bassipiani (lowlands) ed è caratterizzato da pianure che costituiscono la parte più giovane del pianeta. Le lowlands sono di origine vulcanica e presentano uno scarso numero di crateri d’impatto, probabilmente dovuto al fatto che parte di tali crateri sono stati successivamente ricoperti da materiale magmatico.

Marte possiede il più grande vulcano del sistema solare con un diametro pari a 700 km ed un’altezza di ~ 25 km rispetto alle pianure circostanti. Tale vulcano è noto con il nome di Olympus Mons. Attraverso uno studio statistico dei crateri d’impatto congiunto ad un’ analisi di tipo stratigrafico della superficie marziana, i geologi hanno potuto ricostruire la storia del Pianeta Rosso. Vi sono differenti modelli che descrivono la storia geologica marziana. Il modello qui illustrato e attualmente utilizzato è quello di Hartmann et al. (1981) accoppiato alla classificazione di Tanaka (1986) che si basa sulla regola generale in base alle quale le zone che presentano un maggior numero crateri sono le più antiche. Tale modello prevede la divisione della storia geologica di Marte in tre ere:

  • Era Noachiana – dal nome della regione della Noachis Terra che si estende nelle antiche regioni delle highlands. Tale periodo è infatti relativo alla formazione dei più antichi materiali esposti sulla superficie del pianeta. L’era Noachiana è datata, secondo Hartmann et al. (1981), dalla formazione del pianeta, avvenuta 4,5 miliardi di anni fa, fino a 3,5 miliardi di anni fa e comprende il periodo dell’intenso bombardamento meteorico di Marte.

  • Era Esperiana – dal nome di Hesperia Planitia, il migliore esempio dei territori che si formarono in quel tempo (Tanaka et al., 1992). L’era Esperiana, che comprende l’età intermedia della storia marziana, è datata, secondo Hartmann e colleghi (1981), da circa 3,5 a 1,8 miliardi di anni fa) e inizia dalla fine del periodo dell’intenso bombardamento meteorico.

  • Era Amazzoniana – dal nome di Amazonis Planitia. Ha inizio dal periodo di formazione di queste pianure di origine vulcaniche e passando attraverso la formazione dei territori dei depositi stratificati e delle distese di dune intorno ai poli arriva fino all’attuale periodo della storia marziana.  

L’atmosfera di Marte è caratterizzata da dettagli temporanei chiamati nuvole che si distinguono in nubi bianche, composte soprattutto da cristalli di ghiaccio e nubi giallastre, costituite da particelle di sabbia e polvere. Queste ultime derivano dal fatto che il pianeta è caratterizzato da frequenti tempeste di polvere estese a tutto il globo e colossali turbini e valanghe di polvere: tutti fenomeni generati dal vento (Albee, 2003). Le tempeste più intense iniziano per lo più nel corso della primavera australe, quando il pianeta si riscalda rapidamente. Durante queste tempeste periodiche i venti sollevano fino ad altezze di 10-15 km la polvere che ricopre il suolo marziano e che, una volta cessata la tempesta, torna a depositarsi sulla superficie del pianeta, conferendogli il caratteristico colore rosso (Orofino, 1998). Studi sull’evoluzione delle tempeste di polvere hanno dimostrato che la superficie di Marte durante e dopo la tempesta è più fredda del normale (Murphy et al., 1990).

Figura 2 – Immagine della superficie di Marte prima e durante una tempesta di polvere (HST)  

In termini di particelle per unità di volume l’atmosfera marziana risulta così costituita: 95.3% anidride carbonica, 2.7% azoto, 1.6% argon, 0.13% ossigeno molecolare, 0.07% monossido di carbonio mentre solo lo 0.03% è costituito da molecole d’acqua (Carr, 1981). Tale atmosfera, come già riportato, è molto tenue ed esercita al suolo una pressione totale minore di 1/100 rispetto a quella terrestre. Anche la pressione parziale del vapore acqueo, pari circa a 0,002 mbar, è di gran lunga inferiore a quella terrestre. Come conseguenza di ciò, se si considerano le basse temperature del pianeta (intorno a -55°), si ha che l’acqua non può esistere allo stato liquido ma solo nello stato solido o gassoso. Essa infatti solidifica e sublima velocemente. Il basso contenuto di ossigeno molecolare comporta uno strato di ozono quasi inesistente: ciò fa sì che la radiazione ultravioletta giunga direttamente sul suolo marziano.

Anche l’effetto serra esercitato dall’atmosfera di Marte è molto debole. Tutto ciò spiega le forti escursioni termiche, dovute appunto alla mancanza di un’efficace azione equilibratrice dell’atmosfera. Le temperature possono infatti raggiungere i 25° durante una giornata estiva ma cadono di 100° o più durante la notte. Questo brusco calo delle temperature è anche dovuto alla mancanza di un’azione equilibratrice da parte degli oceani. Come conseguenza di ciò l’acqua allo stato liquido non può esistere sulla superficie marziana. Benché le condizioni fredde e aride del pianeta siano documentate in maniera inequivocabile, l’idea di Marte come mondo perpetuamente congelato è andata sempre più perdendo credito da quando le sonde hanno inviato i primi dati. Nei primi anni del ’70, durante la missione americana Mariner 9, furono identificate sulla superficie marziana delle strutture geologiche che hanno suscitato un notevole interesse dal punto di vista paleoclimatico. Si tratta di solchi incisi nel terreno indicati con il termine canali. Tuttavia questo nominativo risulta spesso improprio perché ciò che effettivamente si osserva, nelle immagini inviate sulla Terra dalle sonde, è l’intera valle fluviale in fondo alla quale si trova il canale vero e proprio (Irwin et al., 2005). Dal punto di vista morfologico i canali vengono suddivisi in tre gruppi:

Canali di deflusso – Solitamente sono molto grandi dal momento che possono raggiungere una larghezza massima pari circa a 100 km e una lunghezza compresa fra i 1000 e i 2000 km. La loro profondità è in genere maggiore di un chilometro (Malin, 1976). Questi canali si dipartono dai così detti terreni caotici, regioni di rocce fratturate e ammucchiate le quali sarebbero collassate quando le acque sotterranee eruppero improvvisamente in superficie per effetto della fusione del permafrost (strato di terreno permanentemente ghiacciato presente al di sotto della superficie del pianeta). Tale processo si ritiene sia stato indotto dal calore rilasciato durante l’attività vulcanica (Masursky et al., 1977). Questi terreni caotici sono caratteristici delle highlands. I canali di deflusso partendo da tali zone si estendono verso l’emisfero settentrionale. Generalmente non possiedono tributari e hanno un’ampiezza iniziale maggiore o uguale a quella della parte finale del loro corso (Malin, 1976).  inoltre, la geometria di questi canali sembra indicare velocità elevatissime dei corsi d’acqua. Esempi di canali di deflusso sono la Mangala Vallis, l’Ares Vallis e la Kasei Vallis (vedi figura 3);

Figura 3– Immagine di un tipico canale di deflusso, la Kasei Vallis. L’acqua che ha scavato il canale proveniva dalla regione in basso a sinistra e fluiva verso l’area in alto a destra con un andamento dettato dalla pendenza del terreno. Si noti l’isola dalla caratteristica forma allungata. L’immagine centrata a 20° Nord e 68° Ovest, ha dimensioni di 1130 km x 650 km ed è stata ottenuta mediante l’utilizzo del programma JMARS.  

Valli longitudinali (o valli sinuose) – Sono strette e sinuose e hanno lunghezze di centinaia di chilometri e ampiezze di una decina di chilometri (Baker et al., 1992). Questo tipo di valli non si generano mai in terreni caotici. Circa la loro origine sono state avanzate diverse ipotesi. Alcuni ricercatori ritengono che questi canali siano stati scavati dallo scorrimento di acqua superficiale, processo noto come runoff, derivante da piogge (Masursky, 1973), oppure da acque sotterranee risalite in superficie. Molti altri autori, invece, sostengono che queste valli siano state generate da processi di basal sapping, ossia collasso del terreno prodotto dall’affioramento di ghiacci o acque sotterranei (Baker et al., 1992). Il basal sapping si suddivide in ground-ice sapping o ground-water sapping. Quest’ultimo si osserva quando il collasso del terreno è stato provocato dall’affioramento di acque che avrebbero gradualmente eroso il terreno sovrastante fino a causarne il crollo (Craddock e Maxwell, 1993). Nel processo di ground-ice sapping la sublimazione del ghiaccio avrebbe generato il collasso del terreno. In genere le valli originate da processi di runoff hanno una tipica sezione a “V” mentre quelle generate da ground-water sapping mostrano una sezione a “U”. Una tipica valle longitudinale è la Ma’adim Vallis. La figura 4 mostra un altro esempio di valle longitudinale, la Nirgal Vallis.    Figura 4 – Valle longitudinale, denominata Nirgal Vallis, che scorre da Nord-Ovest a Sud-Est negli altipiani meridionali marziani, andando a sfociare nel grande canale di deflusso Uzboi Vallis, parzialmente visibile a destra. Si estende per circa 420 km e il fondo della valle è parzialmente coperto da dune e increspature. L’immagine, centrata 29° Sud e 41° Ovest, copre un’area di 500 km x 350 km ed è stata ottenuta grazie al programma JMARS.  

Valli dendritiche – Si tratta di sistemi ramificati con un certo numero di affluenti, che vanno a confluire in un unico ramo principale. Sistemi che mostrano affluenti fino al settimo ordine prendono più specificatamente il nome valley networks (Ansan e Mangold, 2006). Solitamente il ramo principale ha un’ampiezza che va aumentano lungo il suo corso. Generalmente queste valli hanno lunghezze inferiori ai 200 km (Carr, 2006), mentre le ampiezze dei rami principali sono dell’ordine del chilometro e le profondità variano dai 50 ai 400 metri (Williams e Phillips, 2001; Kereszturi, 2005). Anche la genesi di questi canali è riconducibile a processi di runoff o ground-water sapping.  inoltre, è probabile che la morfologia delle valli così come noi la osserviamo oggi non sia quella originaria. In seguito alla loro incisione nel terreno, tali strutture potrebbero infatti essere state modificate da processi di mass wasting, ovvero cedimento delle pareti laterali della valle, che hanno dato origine a una morfologia tipica del processo di ground-water sapping (Gulick e Baker, 1990). Di fatto le valli dendritiche sono le più simili alle valli fluviali terrestri. Esemplare di questa categoria è il sistema denominato Warrego Valles (vedi figura 5);

Figura 5 – Sistema ben sviluppato di canali dendritici, denominato Warrego Valles, posto negli altopiani meridionali (43° Sud, 93° Ovest). Secondo alcuni ricercatori, questi canali dendritici hanno avuto un’origine principalmente dovuta a precipitazioni atmosferiche e quindi presuppongono un clima più caldo e umido rispetto a quello attuale (Ansan e Mangold, 2006). Immagine ottenuta tramite JMARS, copre un’area di 170 km x 95 km.  

Oltre alle valli dendritiche esistono poi un gran numero di canali più piccoli detti gullies (vedi figura 6), molto spesso privi di affluenti, che tendono a disporsi parallelamente su terreni caratterizzati da pendenze molto ripide (Clow, 1987). Tali canali sfociano in aree più basse che probabilmente un tempo erano la sede di laghi o mari.

Figura 6 – Immagine tridimensionale che mostra delle gullies poste all’interno di un cratere d’impatto nei pressi della regione dei Nereidum Montes. L’immagine ha le dimensioni di 90 km x 52 km (dal sito http://mars.jpl.nasa.gov/mars3d/).

Vi sono  inoltre, diverse tracce che sembrano suggerire la presenza di un antico oceano (definito come Oceanus Borealis) che avrebbe ricoperto le lowlands dell’emisfero settentrionale (Parker et al., 1989; Helfer, 1990; Schaefer, 1990; Baker et al., 1991; Parker et al., 1993; Di Achille e Hynek, 2010). Prima di tutto, i bassopiani settentrionali sono straordinariamente piatti, e questa caratteristica ha portato a ipotizzare che siano stati fondali marini rivestiti da sedimenti per un periodo significativo della storia marziana.  inoltre, grazie all’altimetro laser MOLA della sonda Mars Global Surveyor è stato possibile rilevare che le probabili linee di costa del presunto oceano presentano la stessa altezza (Di Achille e Hynek, 2010). Due strutture geologiche particolarmente significative in questo contesto sono le scarpate che circondano l’Olympus Mons e l’Apollinaris Patera, due dei più importanti vulcani del pianeta. Si ritiene che il primo si sia trovato nelle vicinanze della linea costiera dell’Oceano Boreale, mentre il secondo sia stato completamente circondato delle acque dell’oceano (Guaita, 2000).  inoltre, l’altimetro MOLA ha permesso di notare che i punti in cui sei dei principali fiumi marziani spariscono nei piani settentrionali si trovano allo stesso livello (Ivanov e Head, 1999; Di Achille e Hynek, 2010).

Non esistono dubbi sul fatto che le valli siano state generate dallo scorrere di acqua liquida. Ciò ha portato molti ricercatori ad intuire che probabilmente al tempo della loro formazione le condizioni di pressione atmosferica e temperatura superficiale del pianeta dovevano essere differenti rispetto a quelle attuali (Hynek et al., 2010). In particolare alcuni autori ritengono che l’era Noachiana sia stata caratterizzata da una clima molto più caldo e umido grazie all’intensa attività vulcanica che ha reso l’atmosfera più densa. Ciò ha indotto un effetto serra sufficiente a riscaldare il pianeta. In seguito però tale effetto sarebbe diminuito e l’atmosfera sarebbe diventata rarefatta a causa della progressiva riduzione dell’attività vulcanica, non più in grado i compensare le perdite di anidride carbonica verso l’esterno del pianeta (dovute alla bassa gravità). Da un punto di vista paleoclimatico risulta interessante studiare la durata del flusso d’acqua all’interno delle valli fluviali. Per quanto riguarda i canali di deflusso, tale tempo di permanenza deve essere stato dell’ordine di alcuni giorni o al massimo di qualche settimana. Questi canali sono stati infatti caratterizzati da una portata elevatissima, pertanto in essi la permanenza dell’acqua è stata del tutto effimera. L’ingente quantità d’acqua coinvolta nel processo è giunta alla fine del corso prima di ghiacciare in tempi estremamente brevi (Squyres, 1989).

Di maggiore interesse paleoclimatico sono invece le valli longitudinali e quelle dendritiche di grandi dimensioni dove l’acqua sarebbe circolata per diversi milioni di anni. Queste valli si sarebbero generate durante l’era Noachiana. (Pieri, 1976, 1980; Fassett e Haed, 2008).  Anche le valli dendritiche di piccole dimensioni hanno richiesto un tempo di formazione abbastanza lungo. L’analisi della loro morfologia rivela, infatti, una modesta portata dalla quale si deduce che per produrre il volume di erosione osservato sono stati impiegati tempi almeno dell’ordine di  105 anni (Gulick e Baker, 1989; Hoke et al., 2011). È probabile che durante l’era Noachiana il pianeta sia stato caratterizzato da periodi in cui le condizioni climatiche sono tornate ad essere temperate o localmente, in seguito a grandi eruzioni vulcaniche, o su scala globale. In quest’ambito estremi stagionali di temperatura possono essere stati provocati dalla tendenza dell’asse di rotazione a variare in modo drastico la propria inclinazione (Kargel e Strom, 1997).

Tuttavia non tutti i ricercatori sono concordi sul fatto che Marte abbia avuto un clima più caldo e umido rispetto a quello che si osserva oggi. Per questi studiosi i canali di cui abbiamo ampliamente discusso si sarebbero generati in condizioni analoghe a quelle attuali, in seguito allo scorrimento di acqua coperta in superficie da ghiaccio (ipotesi originariamente proposta da Wallace e Sagan (1979) e poi ripresa da Carr (1983) e da diversi ricercatori). Questa ipotesi non sembra però tener conto dei processi di congelamento dei corsi d’acqua che si osservano in natura (Carr, 1996). Gulick and Baker (1989, 1993), Clifford (1996) e Squyres e Kasting (1994) ritengono invece che i sistemi vallivi si siano generati per processi di runoff e ground-water sapping generati da acque sotterranee riscaldate da intrusioni magmatiche e sgorgate in superficie. Questi ricercatori sostengono che tutto ciò sia avvenuto in condizioni climatiche simili alle attuali. La loro idea riesce a spiegare l’origine di diversi canali marziani ma non è adattabile alla genesi di molti altri. La superficie del pianeta mostra, infatti, diversi canali dendritici in terreni nei quali non vi è alcuna traccia di presente o passata attività vulcanica.  inoltre, la morfologia di questi canali sembra richiedere un flusso d’acqua abbastanza lungo che nelle attuali condizioni non è possibile (Squyres, 1989; Wharton et al., 1995).

Per quanto riguarda i canali che si trovano in prossimità dei crateri d’impatto si ritiene che la loro origine sia dovuta al calore liberato durante l’urto che ha causato lo scioglimento del ghiaccio sotterraneo (Brakenridge et al., 1985). Se così fosse, ogni cratere avrebbe dovuto ospitare un lago ma questo non accade. E’ stato dimostrato  inoltre, che il calore liberato dall’impatto di crateri di diametro inferiore a 100 km non è sufficiente a far sciogliere il ghiaccio sotterraneo (Gulick, 1998). Tutto ciò sembra suggerire che i canali, situati in prossimità dei crateri d’impatto, abbiano un’origine dovuta a precipitazioni e lo stesso si pensa riguardo alla genesi di molte altre valli fluviali che non si trovano nelle vicinanze di crateri o in aree vulcaniche. Siccome attualmente le uniche precipitazioni possibili sul Pianeta Rosso sono quelle di anidride carbonica allo stato solido, questo va a sostegno della tesi in base alla quale Marte abbia sperimentato in passato condizioni climatiche differenti rispetto a quelle che si osservano oggi. Per verificare tale tesi numerose sonde orbitano attorno al pianeta e lander passeggiano sulla sua superficie.

Le sonde attualmente in orbita operativa sono la Mars Odissey, partita nel 2001, la Mars Express, lanciata dall’ESA il 4 Giugno 2003, entrata in orbita attorno a Marte il 25 Dicembre 2003 e al cui progetto ha partecipato anche il gruppo di Astrofisica dell’Università di Lecce. Attorno al Pianeta Rosso orbita  inoltre, il Mars Reconnaissance Orbiter, una sonda spaziale polifunzionale della NASA lanciata il 12 agosto 2005. Tutti questi orbiter hanno permesso di mappare la superficie del pianeta e determinare la sua composizione. Di notevole importanza è stato  inoltre, il contributo dei rover che hanno permesso di delineare la storia geologica marziana, come Spirit e Opportunity, i due rover americani della missione MER 2003 della NASA, atterrati sul pianeta nel Gennaio 2004. Questo è il momento del rover Curiosity della NASA, che ha toccato la superficie del pianeta il 6 Agosto 2012. L’ipotesi che sta alla base di questa missione è che un tempo Marte sia stato abitabile. Il rover trasporta un vero e proprio laboratorio di analisi per verificare questa ipotesi e capire come il clima abbia apparentemente avuto un cambiamento così drastico portando Marte a quel gelido deserto che oggi lo caratterizza.

Gli obiettivi principali del rover Curiosity sono:

  • Indagare sul clima marziano e sulla sua geologia;

  • Valutare la possibilità che il luogo analizzato abbia ospitato vita microbica;

  • Studi di abilità planetaria in preparazione ad una possibile missione umana su Marte.

Le analisi di Curiosity partono dall’utilizzo di una telecamera ad alta risoluzione al fine di ricercare le zone della superficie di particolare interesse. Curiosity può poi vaporizzare una porzione di tale superficie con un laser a infrarosso ed esaminare la struttura spettrale che ne deriva al fine di determinare caratteristiche e composizione della roccia sotto esame. Se il risultato di tale analisi è particolarmente interessante il rover può utilizzare il suo braccio robotico dotato di uno spettrometro a raggi x per osservare la zone interessata più da vicino. Infine Curiosity può perforare il masso e portare il campione al SAM (Sample Analysis at Mars) o al CheMin (Chemistry and Mineralogy), due laboratori di analisi presenti all’interno del rover. Il SAM analizza elementi organici e gas appartenenti sia al campione che all’atmosfera, mentre il CheMin ha lo scopo di identificare e quantificare i minerali presenti nel campione di roccia, valutando il coinvolgimento dell’acqua nella loro formazione. Analisi dettagliate di alcune rocce da parte del rover hanno confermato l’iniziale ipotesi di alcuni ricercatori in base alla quale quest’ultime contengono ghiaia di origine marina. La forma e le dimensioni della ghiaia incorporata in queste rocce ha permesso ai ricercatori di calcolare la profondità e la velocità dell’acqua che scorreva in questa zona.  inoltre, è stato notato che i ciottoli più grandi non sono distribuiti uniformemente nel conglomerato della roccia ma quest’ultimo presenta diversi strati di sabbia. Questo è comune a molti depositi di ruscelli presenti sulla Terra ed è quindi un’ulteriore prova della presenza di un antico ruscello su Marte. Ma siamo ad un punto di svolta della missione di Curiosity su Marte. Ad un anno dal suo atterraggio, dopo aver studiato una zona più piccola di un campo di calcio, il rover si sta spostando ai piedi del Monte Sharp a circa 8 km di distanza dal suo sito attuale, dove è prevista un’ulteriore trivellazione. Ciò ha lo scopo di fare un confronto con i risultati ottenuti fino ad ora. Curiosity guiderà verso sud-ovest per diversi mesi prima di raggiungere il Monte. Jim Erickson, del Jet Propulsion Laboratory della NASA, ha affermato: “ Non sappiamo quando raggiungeremo il Monte Sharp. Questa è davvero una missione di esplorazione, solo perché il nostro obiettivo finale è il Monte Sharp non vuol dire che non troveremo caratteristiche interessanti lungo la strada”.   

Per la prima volta su una cometa. Rosetta nella storia dell’esplorazione spaziale – Giulia Alemanno

Per la prima volta su una cometa Fin dall’antichità gli uomini sono stati affascinati e terrorizzati dalle comete. Questi corpi celesti suscitavano paura e, tranne rare eccezioni, come la nascita di Cristo, venivano considerate portatrici di sventure. Curiosamente si riteneva che le sventure fossero dirette a persone benestanti come i re, gli imperatori, i principi e i papi. “Quando muoiono mendicanti non si vedono comete” scrisse Shakespeare nel “Giulio Cesare”. Di tanto in tanto questi oggetti, che risiedono agli estremi confini del Sistema Solare, vengono a farci visita offrendoci uno spettacolo bellissimo. Quando si avvicinano al Sole liberano gli elementi volatili in essi contenuti creando la chioma, un’atmosfera gassosa e polverosa che circonda il nucleo cometario, e due code: una coda di plasma, di colore azzurrognolo, formata da un flusso di ioni che lasciano la chioma e vengono accelerati in direzione opposta al Sole e una coda di polvere, di colore giallognolo, costituita invece da una scia di polvere. La forma delle code è determinata da un effetto combinato tra la pressione di radiazione solare e il moto orbitale. La coda di ioni ha generalmente una forma rettilinea in quando è costituita da particelle di gas che vengono accelerate a velocità maggiori e pertanto non risentono del moto orbitale. La coda di polveri acquisisce invece una caratteristica forma arcuata a causa dell’influenza del moto orbitale sulle particelle in essa contenute. Talvolta si possono presentare delle strutture particolari in cui le varie particelle che lasciano la chioma vanno a formare un ventaglio di code. Questa struttura è dovuta alla presenza di particelle di diverse dimensioni e massa che pertanto risentono in maniera diversa della spinta della pressione di radiazione solare e dell’influenza del moto orbitale.

Per secoli le comete sono state osservate esclusivamente da Terra ad occhio nudo o attraverso l’utilizzo dei telescopi. A partire dalla fine del ventesimo secolo, grazie all’avvento delle sonde spaziali, la situazione è cambiata radicalmente. Da allora è stato possibile avvicinarsi alle comete ed osservarle da vicino. Nel 1985 la sonda della NASA chiamata International Cometary Explorer (ICE) passò per la prima volta attraverso la coda di una cometa, la 21P/Giacobini-Zinner, volando alla distanza di 7800 km dal nucleo. Soltanto un anno dopo, in occasione del ritorno della cometa di Halley nei nostri cieli (si tratta della cometa più famosa, battezzata così in onore di Edmund Halley che nel 1682 ne predisse la periodicità pari circa a 76 anni), un gruppo di sonde spaziali furono inviate per studiare la cometa da vicino tra cui due missioni russe (Vega-1 e Vega-2), due giapponesi (Sakigake e Suisei) e l’europea Giotto. Quest’ultima è arrivata più vicina rispetto alle altre sonde, volando ad una distanza di 600 km dalla cometa e inviando immagini dettagliate del suo nucleo. Grazie alla sonda Giotto si scoprì che le comete contengono molecole organiche complesse e che quindi possono aver contribuito a seminare la vita sulla Terra. Dopo l’incontro ravvicinato con la cometa di Halley, la sonda Giotto ha continuato il suo viaggio incontrando nel 1992 la cometa 26P/Grigg-Skjellerup.

Purtroppo la camera di Giotto era stata oscurata dalle polveri della cometa di Halley ma comunque è stato possibile osservare, seppur con maggiore difficoltà, il nucleo di quest’altra cometa passando alla distanza di 200 km da esso. Alla missione Giotto ne sono seguite altre come le sonde della NASA: Depp Space 1, Stardust e Deep Impact. La prima volò nelle vicinanze della cometa 19P/Borelly nel 2001, la seconda avvicinandosi alla cometa 81P/Wild nel 2004 riuscì a prelevare alcuni campioni della sua chioma e a riportarli a Terra 2 anni dopo. In quei campioni è stata scoperta nella polvere della cometa Wild la presenza di glicina, uno degli amminoacidi essenziali per la costruzione delle proteine. La terza missione citata (Deep Impact) nel 2005 ha lanciato un blocco di rame contro la cometa 9P/Tempel allo scopo di creare un cratere e studiare la composizione della cometa sotto la sua superficie. Per osservare il cratere creato è stata poi inviata sei anni dopo la sonda Stardust-Next. In seguito tale sonda è stata fatta volare, insieme alla sonda EPOXI, vicino alla cometa 103P/Hartley nel 2010, alla cometa C/2009 P1 (Garradd) nel 2012 e alla cometa C/2012 S1 (ISON) nel 2013. Ma la più ambiziosa delle missioni è Rosetta realizzata allo scopo di inseguire una cometa, entrare in orbita attorno ad essa ed infine atterrare sulla sua superficie. Si pensò a questa missione a partire dal 1970 ma essa fu approvata dall’Agenzia Spaziale Europea (ESA) solo nel Novembre del 1993.

Rosetta è la prima sonda inviata verso una cometa che è dotata di un lander in grado di scendere sulla superficie della cometa 67P/Churyumov-Gerasimenko e accompagnarla nel suo viaggio attorno al Sole. La sonda Rosetta è stata costruita da un team industriale formato da ben 50 imprese di 14 Paesi Europei e degli Stati Uniti. Il nome Rosetta ha una ragione ben precisa. Esso deriva dalla Stele di Rosetta, un’antica tavoletta di pietra egiziana risalente al II secolo a.C. ritrovata nei pressi della città egiziana Rashid (Rosetta) sul delta del Nilo nel 1799. La Stele è famosa perché riporta lo stesso testo scritto in tre lingue diverse: antichi geroglifici egiziani, demotico e greco antico. Ciò ha permesso agli archeologi di decifrare i geroglifici per la prima volta fornendo così la chiave per comprendere la civiltà egizia. Come la Stele di Rosetta ci ha permesso di scoprire gli aspetti salienti di questa antica civiltà, allo stesso modo ci si augura che la missione Rosetta possa aiutarci a svelare i misteri dei più antichi mattoni del nostro Sistema Solare.  

Ci sono centinaia di comete che orbitano attorno al Sole, perché è stata scelta proprio la cometa 67P/Churyumov-Gerasimenko? Una serie di motivi hanno portato alla scelta di questa cometa. Innanzitutto, tra tutte le comete si è ritenuto vantaggioso sceglierne una di quelle che mostrano un percorso orbitale abbastanza vicino al piano dell’eclittica. Questo permette osservazioni maggiormente prolungate e un atterraggio in linea di principio più semplice. Così in un primo momento è stata scelta la cometa 46P/Wirtanen, ma in seguito, poiché il lancio della sonda fu rinviato per un problema al lanciatore, la scelta è ricaduta sulla cometa 67P/Churyumov-Gerasimenko, Quest’ultima è stata osservata per la prima volta nel 1969 quando diversi astronomi provenienti da Kiev si recarono presso l’Alma-Ata Astrophysical Institute in Kazakhstan per condurre uno studio sulle comete. L’astronomo Kim Churyumov, osservando una foto della cometa 32P/Comas Solà ottenuta da Svetlana Gerasimensko, si accorse della presenza di un altro oggetto cometario. La cometa 67P/C-G è una cometa a corto periodo, ovvero appartiene alla classe di quelle comete caratterizzate da un periodo orbitale minore di 20 anni e da una bassa inclinazione orbitale. Si tratta di comete che durante il loro primo viaggio all’interno del Sistema Solare sono state catturate dall’attrazione gravitazionale di Giove ed immesse in un’orbita più stretta attorno al Sole. Queste comete fanno parte della cosiddetta famiglia di Giove e si crede provengano dalla fascia di Kuiper, una fascia di corpi ghiacciati situata al di là dell’orbita di Nettuno. Alcuni di questi corpi, in seguito a perturbazioni gravitazionali, vengono spinti nella regione interna del Sistema Solare.

L’analisi dell’evoluzione orbitale della cometa mostra che prima del 1940 al perielio la sua distanza dal Sole era pari a 4 UA (600 milioni di km). A questa distanza la cometa era troppo lontana dal calore del Sole per sviluppare una coda e pertanto era inosservabile da Terra. Nel 1940, in seguito ad un incontro ravvicinato con Giove, l’orbita della cometa è cambiata e quest’ultima ha raggiunto al perielio una distanza dal Sole pari a 3 UA (450000 km). Un altro incontro ravvicinato con Giove, nel 1959, ha spostato il perielio della cometa a 1.29 UA, valore che è rimasto grosso modo invariato fino ad oggi. Attualmente essa compie una rivoluzione attorno al Sole in 6,45 anni.

La cometa 67P è classificata come una cometa di polveri (il rapporto polveri gas emessi è 2:1), ha una massa di 1013 kg ed una densità di 0.4 g/cm3 ed è stata osservata dalla Terra ben 7 volte, nel:

  • 1969 – anno della scoperta;

  • 1982/83 – anno in cui è stato registrato un picco di polvere di 220 kg al secondo;

  • 1988/89 – la cometa è stata osservata dagli astronomi dell’osservatorio di Monte Palomar in California, dagli astronomi dell’osservatorio di Manua Kea nelle Hawaii e da quelli dell’Osservatorio Nazionale di Kitt Peak in California.

  • 1995/96 – la cometa è arrivata alla distanza di 0.9 UA dalla Terra ed è diventata più luminosa della magnitudine 13.

  • 2002/03 – la Wilde Field Planetary Camera a bordo dell’ Hubble Space Telecope ha ottenuto 61 immagini della cometa cha hanno permesso di stimare una forma ellissoidale del nucleo (smentita poi all’arrivo di Rosetta, come vedremo meglio di seguito). Nello stesso anno è stato registrato un picco di polvere pari a 60 kg al secondo;

  • 2009 – è stato osservato che, come la maggior parte delle comete, anche nel caso della cometa 67P l’attività al perielio non è distribuita in maniera uniforme ma sono stati registrati getti provenienti da differenti aree attive della cometa. Recenti osservazioni suggerivano che l’inclinazione dell’asse di rotazione della cometa era pari a circa 40°. Ciò vuol dire che quando si avvicina al Sole, l’emisfero Nord della cometa è illuminato mentre quello sud no. In questa situazione i getti di polveri e gas della cometa non sono visibili. E’ possibile osservarli invece un mese prima del perielio. Se la cometa si comporterà nello stesso modo nel prossimo avvicinamento al Sole (2015), si avrà la stessa situazione.

Grazie alla missione Rosetta sono già stati fatti enormi passi avanti sulla conoscenza della struttura della cometa e si è ancora nelle fasi preliminari di analisi dei dati! La sonda è stata lanciata nello spazio da Kourou a bordo di Ariane 5G+ il 2 Marzo 2004 ed ha viaggiato per ben 10 anni nello spazio prima di raggiungere la cometa. Per poter arrivare a destinazione Rosetta ha dovuto effettuare un tragitto complesso sfruttando anche il cosiddetto effetto fionda (gravity assist) da parte della Terra e di Marte. Si tratta di un meccanismo di accelerazione (o eventualmente anche di decelerazione) che sfrutta la gravità di un pianeta o di un corpo presente lungo il suo tragitto per modificare i parametri dinamici della sonda “gratuitamente” per così dire. Una volta lanciata la sonda ha inanellato una serie di orbite che l’hanno portata per ben tre volte ad un incontro ravvicinato (flyby) con la Terra e ad un incontro ravvicinato con Marte. Ogni volta la sonda ha cambiato la sua velocità e la sua traiettoria grazie all’energia del campo gravitazionale di questi due pianeti. Durante i flyby gli scienziati hanno colto l’opportunità di fare osservazioni in contemporanea ad altri veicoli come le sonde Mars Express, ENVISAT e Cluster. Gestire i flyby è piuttosto complesso e ha richiesto mesi di preparazione. Ad esempio nell’incontro ravvicinato con Marte la sonda è passata alla distanza di 250 km dalla superficie del pianeta entrando nella sua ombra per ben 24 minuti. Fu grande il sollievo quando la sonda ricomparve in “ottima salute” dopo il passaggio dietro Marte.

Durante il suo viaggio Rosetta ha incontrato ben due asteroidi. Questi incontri hanno permesso agli scienziati di testare e verificare le prestazioni degli strumenti a bordo della sonda. Il 5 Settembre del 2008 Rosetta è volata alla distanza di 800 km dall’asteroide Steins, un piccolo asteroide di 5 km di diametro. Si è cercato così di catturare immagini e dati attraverso la camera OSIRIS a bordo della sonda. Nel successivo incontro con l’asteroide Lutetia nel Luglio del 2010, Rosetta è stata fatta volare ad una distanza maggiore (pari a 3170 km) in modo che tutto l’asteroide entrasse nel suo campo visivo, la camera a bordo della sonda ha ripreso l’asteroide Lutetia insieme a Saturno. Dalle immagini acquisite si è notato che Lutetia si presenta come un pianetino in miniatura la cui superficie ha subito vari impatti come testimoniato dalla presenza di grandi crateri. Lutetia ha un diametro di 130 km ed a quel tempo era il più grande asteroide mai visto. La superficie di questo asteroide è polverizzata e povera di metalli. Inoltre è stata osservata la presenza di minerali idrati.

Images (from left to right) taken 60, 30 and 3 minutes prior to closest approach showing the different regions of asteroid (21) Lutetia. Credit: ESA 2010 MPS for OSIRIS Team MPS/UPD/LAM/IAA/RSSD/INTA/ UPM/ DASP/IDA

La sonda Rosetta è dotata di due grandi pannelli solari molto efficienti costruiti secondo una tecnologia completamente nuova per l’epoca. Ma poiché la sonda si è allontanata dal Sole più di qualsiasi altro veicolo spaziale utilizzato in precedenza, per far sì che l’energia sia sufficiente per mantenere tutti i sistemi del veicolo spaziale operativi, l’8 Giugno 2011 Rosetta è stata “messa a dormire” per ben due anni, sette mesi e dodici giorni: sono stati disabilitati tutti gli strumenti e apparati di supporto ad eccezione del computer di bordo, di alcuni riscaldatori interni fino alle ore 10:00 del 20 Gennaio 2014 giorno stabilito per il risveglio della sonda. La successiva riattivazione è stata sicuramente una delle fasi più critiche dell’intera missione. Il 7 Maggio 2014 sono iniziate le manovre di avvicinamento alla cometa. In totale Rosetta ha compiuto ben 10 manovre per ridurre la sua velocità. L’ultima manovra è stata eseguita il 6 Agosto 2014. Durante il periodo di avvicinamento le camere a bordo della sonda hanno iniziato a risolvere la cometa 67P/C-G. Nel luglio 2014 le immagini catturate dalla sonda hanno rivelato che la cometa ha una forma piuttosto complessa: è formata da due lobi, come una “testa” ed un “corpo” separati da un collo stretto. Ci si rese conto così che l’atterraggio sulla cometa sarebbe stato più difficile di quanto si era immaginato. Ciò ha reso complessa anche la scelta del sito di atterraggio del lander (chiamato Philae dal nome di un’isola dell’antico Egitto): la superficie della cometa presenta, infatti, terreni difficili e rischiosi, pieni di crateri e massi.

La cometa 67P/Churyumov-Gerasimenko vista da Rosetta – Credits: ESA/Rosetta/NAVCAM

La scelta del sito di atterraggio era inoltre complicata da un serie di fattori legati alla temperatura superficiale della regione, che deve essere né troppo calda né troppo fredda per permettere il corretto funzionamento degli strumenti. Dopo un intenso periodo di analisi dettagliate delle varie regioni della cometa e delle capacità del lander durato ben 6 settimane, è stata scelta come sito di atterraggio una regione particolarmente interessante. A tale regione, inizialmente indicata con la lettera J, è stato dato il nome di Agilkia (dall’isola Agilkia situata vicino alle rive del Nilo a sud dell’Egitto). Il sito J è una zona di grande interesse scientifico situata vicino ad una grande depressione sul lobo più piccolo della cometa. Inizialmente erano stati scelti 5 possibili siti di atterraggio indicati con le lettere A, B, C, I e J, ma tra tutti quello meno rischioso era proprio Agilkia, il sito J. Qui la maggior parte del terreno ha pendenze inferiori ai 30° e ci sono relativamente pochi massi di grandi dimensioni. Questa area riceve inoltre un’illuminazione quotidiana sufficiente a ricaricare Philae e far sì che possa continuare le sue operazioni. Il sito di atterraggio è stato scelto dal Landing Site Selection Group (LSSG), un gruppo formato da scienziati e ingegneri del team di Rosetta e del centro di controllo del lander.

Il distacco del lander Philae dalla sonda Rosetta è avvenuto alle ore 9:30 del 12 Novembre. La discesa al sito di atterraggio ha richiesto come previsto 7 ore in cui Philae è caduto sulla superficie lentamente senza l’utilizzo di propulsori.

Durante la discesa, le camere a bordo dell’orbiter e del lander hanno acquisito immagini ed alcuni esperimenti erano già attivi permettendo l’acquisizione di dati. Tutto ciò alla scopo di manovrare e controllare l’atterraggio. Tutto è stato controllato nei minimi dettagli. E’ stato necessario tener conto che la gravità sulla cometa è centomila volte più debole di quella terrestre. Purtropo il malfunzionamento di alcuni sistemi di ancoraggio non ha potuto evitare che il lander rimbalzasse due volte prima di stabilizzarsi in una posizione abbastanza precaria ma che comunque non ha impedito l’utilizzo di alcuni degli strumenti scientifici a bordo. E’ stata una grande emozione assistere al primo atterraggio su una cometa. Philae ha raggiunto la superficie della cometa alle ore 16:30. Circa mezz’ora dopo, quando il segnale è arrivato a Terra, abbiamo visto gioire gli scienziati della missione. Un lander partito da Terra 10 anni fa, progettato ancora prima, dopo aver seguito un percorso complesso nello spazio, è arrivato in “ottima salute” sulla superficie della cometa 67P attualmente alla distanza di 583.565.417 km da noi. E’ un grande risultato per l’Europa e per tutte le persone che hanno ideato, studiato e realizzato questa missione storica. Ora che è atterrato Philae può acquisire immagini panoramiche 3D ad alta risoluzione.

“Philae is on the surface and doing a marvellous job, working very well and we can say we have a very happy lander,” says Paolo Ferri, ESA’s Head of Mission Operations at ESOC – Credits: ESA/Rosetta/Philae/CIVA

Sarà possibile fare misure in loco sulla composizione dei ghiacci della cometa e del materiale organico. Si potrà, inoltre, prelevare ed analizzare campioni dalla profondità di 23 cm. Il lander sarà anche in grado di effettuare misure elettriche e meccaniche della superficie della cometa. Tutti i dati acquisiti da Philae verranno inviati all’orbiter che sarà pronto per trasmetterli a Terra, compatibilmente con le riserve energetiche della batteria di bordo e quelle prodotte dai pannelli solari che purtroppo non possono funzionare a regime a causa della posizione anomala in cui si trova Philae. Il lander continuerà a monitorare le proprietà fisiche e chimiche della superficie della cometa studiando come queste evolvono man mano che la cometa si avvicina al Sole. Per quanto riguarda invece l’orbiter, quest’ultimo, in un primo momento, si manterrà abbastanza vicino al nucleo cometario. A partire da Febbraio 2015, con l’aumento dell’attività cometaria, sarà allontanato dal nucleo cometario per evitare di compromettere il funzionamento della sonda. In questa fase si studierà l’evoluzione della chioma e della coda della cometa. Nel mese di Luglio, Rosetta volerà nelle vicinanze di una regione attiva della cometa. Quest’ultima raggiungerà il perielio nel mese di Agosto 2015 passando alla distanza di 186 milioni di km dal Sole, in una regione compresa tra le orbite di Terra e Marte. In seguito Rosetta seguirà il declino dell’attività cometaria almeno fino alla fine del 2015.

L’orbiter ha dimensioni di  2.8×2.1x2m con due pannelli solari lunghi 14m e contiene ben 11 esperimenti:

  • ALICE – Ultraviolet Imaging Spectrometer – si tratta di uno spettrometro che raccoglie dati nel lontano ultravioletto in un range compreso tra 70 e 205 nm allo scopo di studiare la composizione del nucleo e della chioma della cometa. Lungo il tragitto verso la cometa ALICE ha studiato Marte e gli asteroidi Steins e Lutetia;

  • CONSERT – Comet Nucleus Sounding Experiment by Radio wave Transmission – è un sistema di trasmissione di onde radio che lavorerà tra l’orbiter e il lander e verrà utilizzato per studiare la composizione del nucleo cometario. CONSERT consiste in un segnale radio che verrà inviato dallo strumento alla superficie del nucleo. La variazione nella propagazione delle onde nelle diverse parti del nucleo cometario permetterà di determinare le proprietà dielettriche dei materiali di cui è composto;

  • COSIMA – Cometary Secondary Ion Mass Analyser – si tratta di uno spettrometro di massa di ioni secondari dotato di un collettore di polvere. La polvere dell’ambiente circostante la cometa viene raccolta su un bersaglio. Le particelle di polvere vengono bombardate da ioni di indio e gli ioni secondari prodotti vengono estratti nello spettrometro di massa;

  • GIADA – Grain Impact Analyser and Dust Accumulator – misura la velocità, la quantità di moto e la dimensione delle particelle di polvere della chioma cometaria attraverso un sistema di rilevazione ottico e un sensore meccanico che avverte l’impatto delle particelle;

  • MIDAS – Micro-Imaging Dust Analysis System – si occupa di analisi microstrutturali delle particelle di polvere basandosi sulla microscopia a forza atomica, una tecnica che permette analisi delle particelle di polvere con una risoluzione spaziale di 4 nm;

  • MIRO – Microwave Instrument for the Rosetta Orbiter – si tratta di ricevitori di onde millimetriche che permettono di misurare la temperatura in prossimità della superficie della cometa;

  • OSIRIS – Optical, Spectroscopic, and Infrared Remote Imaging System – è una camera che lavora nell’ottico, nel vicino infrarosso e nel vicino ultravioletto. E’ formata da un sistema di due telecamere. Una camera è stata progettata per poter ottenere immagini ad alta risoluzione del nucleo cometario. La seconda camera ha invece un campo visivo più ampio che permette l’osservazione di gas e polvere presente al di sopra della superficie del nucleo cometario;

  • ROSINA – Rosetta Orbiter Spectrometer for Ion and Neutral Analysis – è formata da due spettrometri di massa ad altissima sensibilità e risoluzione;

  • RPC – Rosetta Plasma Consortium – è costituito da 5 strumenti che studiando l’ambiente gassoso che circonda il nucleo cometario:

 ICA- Ion Composition Analyser – misura la distribuzione tridimensionale delle velocità degli ioni positivi e la loro distribuzione di massa;

IES – Ion and Electron Sensor – misura simultaneamente il flusso di elettroni e di ioni nel plasma che circonda il nucleo;

LAP – Langmuir Probe – misura la densità, la temperatura e la velocità di flusso del plasma cometario;

MAG – Fluxgate Magnetometer – misura il campo magnetico laddove il vento solare interagisce con il flusso cometario;

MIP – Mutual Impedance Probe – misura la densità degli elettroni, la temperatura e la velocità della parte interna della chioma;

  • RSI – Radio Science Investigation – si tratta del sistema di comunicazione tra la sonda Rosetta e la Terra; ü     VIRTIS – Visible and Infrared Thermal Imaging Spectrometer – è uno strumento costruito parte in Italia parte in Francia, a cui ha contribuito anche il Gruppo di Astrofisica dell’Università del Salento ed è considerato uno degli esperimenti più importanti della missione Rosetta. VIRTIS è uno spettrometro a immagine che lavora nel range spettrale che va dal visibile all’infrarosso ed è costituito da uno spettrometro di risoluzione moderata noto come Mapper optical subsystem o VIRTIS-M (opera italiana, alla cui realizzazione ha contributo il nostro gruppo di Astrofisica) ed uno spettrometro ad alta risoluzione detto High-resolution optical subsystem o VIRTIS-H. VIRTIS-M è formato da due canali uno dei quali lavora nel visibile (tra 0.25 e 1 µm) e l’altro nell’infrarosso (tra 0.95 e 5 µm). VIRTIS-H lavora nell’infrarosso (tra 2.0 e 5.0 µm) ed è invece opera dei francesi.

Gli obiettivi di VIRTIS includono lo studio del nucleo cometario e del suo ambiente, la determinazione della natura dei solidi che compongono la sua superficie, l’identificazione delle specie gassose che circondano il nucleo, lo studio delle condizioni fisiche della chioma ed infine la determinazione della temperatura superficiale del nucleo. Il team di VIRTIS è composto da 48 scienziati provenienti da 28 Istituti di 7 Nazioni. Siamo ancora all’inizio della missione e sono già stati ottenuti 3 milioni di spettri, è stato possibile determinare la temperatura superficiale della cometa ed osservare come tutta la sua superficie è ricoperta da una patina di materiale organico. VIRTIS ha stabilito che la temperatura media della superficie della cometa è di 205 °K ma varia durante il giorno raggiungendo i 230 °K. Grazie allo strumento VIRTIS è stata inoltre rilevata la presenza di monossido di carbonio, biossido di carbonio e tracce di ammoniaca, metano e metanolo.   Anche gli altri strumenti a bordo della sonda hanno già iniziato a dare i primi risultati. Nel mese di Luglio lo strumento MIRO ha rilevato che la cometa stava rilasciando piccole quantità di vapore acqueo, circa 300 ml al secondo.

A metà settembre la quantità è aumentata ad un tasso medio di 1 l al secondo. Gli esperimenti RSI e OSIRIS hanno permesso di determinare periodo di rotazione, asse di rotazione, massa, volume e densità del nucleo cometario. COSIMA e GIADA hanno rivelato che le dimensioni dei grani di polvere vanno dai pochi micron a qualche centinaio di micron. COSIMA, studiando la composizione dei grani, ha rilevato in essi la presenza di sodio e magnesio. Così grazie a queste prime misure è stato possibile notare alcune caratteristiche superficiali della cometa 67P/C-G il cui nucleo risulta essere piuttosto scuro, asciutto, polveroso e con una chimica abbastanza complessa.   Ma abbiamo ancora tanto da imparare e questo sarà possibile grazie anche agli esperimenti del lander.

Il lander Philae ha dimensioni di 1x1x1m e contiene 10 esperimenti:

  • APXS – Alpha-p-X-ray spectrometer – è uno spettrometro il cui obiettivo è quello di studiare la composizione chimica del sito di atterraggio e come questa varia all’avvicinarsi al Sole;

  • CIVA – Panoramic and microscopic imaging system – un sistema di 6 microcamere che scatteranno foto panoramiche della superficie della cometa. Inoltre uno spettrometro studierà la composizione, la struttura e l’albedo dei campioni prelevati dalla superficie;

  • CONSERT – Radio sounding, nucleus tomography – un esperimento che opera tra il lander e l’orbiter di cui si è parlato prima;

  • COSAC – Evolved gas analyser – elemental and molecular composition – mira allo studio della composizione della componente volatile del materiale cometario mediante misure in situ;

  • PTOLEMY – Evolved gas analyser – isotopic composition – utilizzerà tecniche di gascromatografia e spettrometria di massa per studiare la composizione della cometa sopra e sotto la sua superficie;

  • MUPUS – MUlti-PUrpose Sensors for Surface and Sub-Surface Science – si tratta di sensori realizzati allo scopo di comprendere le proprietà de materiali che compongono gli strati superficiali del nucleo cometario e fornire una mappa termica;

  • ROLIS – Rosetta Lander Imaging System – è una camera che fornirà immagini durante l’atterraggio del lander;

  • ROMAP – Rosetta Lander Magnetometer and Plasma Monitor – si tratta di un sensore in grado di misurare il campo magnetico;

  • SD2 – Drilling and sample retrieval – è un sistema che permette di prelevare i campioni da una profondità di 250 mm e li trasporta nei diversi strumenti;

  • SESAME – Surface Electric Sounding and Acoustic Monitoring Experiment – aiuterà a comprendere come le comete si sono formate ed è formato da tre differenti parti:

SESAME/CASSE – Surface Electric Sounding and Acoustic Monitoring Experiment / Comet Acoustic Surface Sounding Experiment;

SESAME/DIM – Surface Electric Sounding and Acoustic Monitoring Experiment / Dust Impact Monitor;

SESAME/PP – Surface Electric Sounding and Acoustic Monitoring Experiment / Permittivity Probe.  Complessivamente tutti gli esperimenti si propongono di studiare l’ambiente all’interno ed all’esterno della cometa.  

Si tratta di una missione unica, per la prima volta siamo atterrati su una cometa e ora abbiamo la possibilità di studiare questi oggetti come mai è stato possibile fino ad ora. Speriamo di riuscire a svelare i segreti più profondi che questi oggetti ci nascondono.

Per la prima volta su una cometa. Rosetta nella storia dell’esplorazione spaziale, Parte II – Giulia Alemanno

Era il 6 Agosto 2014 quando la sonda Rosetta ha compiuto l’ultima manovra di avvicinamento alla cometa 67P/Churyumov-Gerasimenko ponendosi a circa 100 km dalla superficie del nucleo cometario (a cui si è poi ulteriormente avvicinata per permettere l'”accometaggio” di Philae) ed è tempo di analizzare i primi risultati scientifici. Nel precedente articolo abbiamo visto nel dettaglio la storia della missione Rosetta, il suo viaggio verso la cometa 67P/Churyumov-Gerasimenko; abbiamo seguito le varie tappe della discesa del lander Philae sulla superficie della cometa ed analizzato gli esperimenti a bordo dell’orbiter e del lander. Qui vedremo i primi ed importanti risultati ottenuti da Rosetta. Recentemente (il 23 Gennaio 2015) sono stati pubblicati, infatti, in un’edizione speciale della prestigiosa rivista Science, i primi lavori relativi a 7 degli 11 esperimenti  a bordo dell’orbiter Rosetta. Ricordiamo brevemente che tali esperimenti sono:

  • ALICE –  uno spettrometro a immagine che lavora nell’ultravioletto;

  • CONSERT –  un sistema di trasmissione a onde radio che studia la composizione del nucleo cometario;

  • COSIMA – uno spettrometro di massa progettato con lo scopo di studiare la composizione della polvere cometaria;

  • GIADA – un sistema dotato di un rivelatore ottico ed un sensore meccanico che studiano caratteristiche delle particelle di polvere quali velocità, quantità di moto e dimensione;

  • MIDAS – un sistema che si occupa di analisi microstrutturali delle particelle di polvere;

  • MIRO – ricevitori di microonde in grado di misurare la temperatura in prossimità della superficie della cometa.

  • OSIRIS  – una camera che lavora nell’ottico, nel vicino infrarosso e nel vicino ultravioletto;

  • ROSINA – dotata di due spettrometri di massa per l’analisi degli ioni cometari;

  • RPC – costituita da 5 sensori che studiano l’ambiente cometario;

  • RSI – che gestisce le comunicazioni tra l’orbiter e il lander Philae;

  • VIRTIS – uno degli esperimenti più importanti della missione Rosetta alla cui realizzazione ha contribuito il gruppo di Astrofisica dell’Università del Salento. Si tratta di uno spettrometro che lavora nel visibile e nel vicino infrarosso con l’obiettivo di studiare la composizione del nucleo cometario e riconoscere quali sono i solidi che compongono la sua superficie. Grazie a VIRTIS sono stati ottenuti, come vedremo a breve, risultati importanti per la comprensione della natura della cometa.

Già durante l’avvicinamento di Rosetta alla cometa, grazie alle immagini scattate dalla camera OSIRIS, è stato possibile notare che la cometa è formata da due lobi. Analisi più dettagliate hanno permesso poi di determinare la dimensione di ogni lobo: il più piccolo misura 2.6×2.3×1.8km invece il lobo più grande misura 4.1×3.3×1.8km. Inoltre, è stato ottenuto il volume totale della cometa pari a 21.4km3. Lo strumento RSI ha poi misurato la massa del nucleo cometario che risulta essere pari a ben 10 miliardi di tonnellate. Da ciò si deduce che la densità del nucleo della cometa è pari a 470kg/m3. Supponendo che globalmente la cometa sia costituita prevalentemente da ghiaccio d’acqua e polvere con una densità di 1500-2000kg/m3, se ne deduce che la cometa ha una struttura interna costituita da ghiaccio legato in maniera piuttosto debole a mucchi di polvere con piccoli spazi vuoti tra loro. La cometa risulta pertanto avere un’elevata porosità del 70-80%.

La camera OSIRIS ha permesso poi di suddividere parte della superficie della cometa in 19 regioni separate da confini ben distinti dal punto di vista geomorfologico. Queste regioni coprono il 70% della superficie cometaria e sono state indicate con i nomi di alcune divinità egiziane. Tutto ciò per mantenere il tema egiziano. Ricordiamo infatti che il nome Rosetta deriva dall’antica Stele ritrovata nei pressi della città egiziana Rashid (Rosetta) sul delta del Nilo nel 1799 che ha permesso di decifrare per la prima volta i geroglifici fornendo la chiave per comprendere l’antica civiltà. Allo stesso modo ci si augura che questa missione ci permetta di comprendere la struttura dei più antichi mattoni dell’universo: le nostre comete.  

L’immagine rilasciata dall’ESA il 22 Gennaio 2015, mostra le 19 regioni in cui è stato suddiviso il 70% della superficie della cometa 67P/C-G a seconda della caratteristiche geomorfologiche del terreno di cui sono costituite.

Le regioni in cui è stata suddivisa la superficie del nucleo cometario possono essere raggruppate in 5 differenti categorie in base al tipo di terreno da cui sono costituite. Vi sono superfici ricoperte da spessi strati di polveri come quelle delle regioni Ma’at, Ash e Babi e superfici maggiormente consolidate dette appunto ‘rock-like’, vale a dire ‘simili alla roccia’ (Maftet, Bastet, Serqet; Hathor, Anuket, Khepry, Aker, Atum e Apis); poi vi è Seth una regione costituita da materiali fragili che presenta pozzi e strutture circolari; le regioni Hatmehit, Nut e Aten che presentano depressioni su larga scala ed infine le regioni Hapi, Imhotep e Anubis costituite da terreni lisci. Il restante 30% della superficie della cometa non è stato ancora studiato nel dettaglio poiché non ha ricevuto un’illuminazione solare sufficiente per poter essere osservato accuratamente dagli strumenti di Rosetta.

Dai dati ottenuti è quindi emerso che gran parte dell’emisfero settentrionale della cometa è ricoperto da polvere. Il ricoprimento di polvere raggiunge diversi metri di spessore in alcune regioni della cometa. Secondo analisi condotte dall’esperimento MIRO la polvere gioca un ruolo importante nell’isolare l’interno della cometa proteggendo così i ghiacci lì situati.

Durante il periodo di avvicinamento al Sole la cometa subisce un crescente riscaldamento, pertanto in queste regioni le sostanze volatili evaporano direttamente andando a formare l’atmosfera o chioma della cometa e la polvere viene trascinata via con tali sostanze a velocità inferiori. Le particelle che non sono sufficientemente veloci non riescono a sfuggire all’attrazione gravitazionale del nucleo cometario pertanto tornano a depositarsi su di esso. Sono state inoltre osservate altre regioni attive della cometa. Gas sembrano fuoriuscire anche da ‘pozzi’ della cometa. Tali gas giocano un ruolo importante nel trasporto della polvere creando increspature simili a dune in corrispondenza di massi che ostacolano la direzione del flusso di gas.

Immagine ottenuta dalla camera OSIRIS che mostra una zona attiva nella regione Seth della cometa 67P/C-G. Aumentando il contrasto si possono notare, nell’immagine a destra, jet sottili di gas che fuoriescono dalla fossa. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA.  

La cometa presenta inoltre delle particolari strutture superficiali grumose chiamate quasi in tono scherzoso ‘goosebumps’, ovvero ‘pelle d’oca’ in riferimento alla forma ad anatra della cometa. L’origine di queste strutture non è ancora nota con certezza ma comunque si pensa potrebbero essere importanti per comprendere i processi in atto durante la formazione della cometa. Un’ipotesi avanzata è quella in base alla quale queste strutture hanno avuto origine dall’aggregazione di gas e polvere che in un primo momento ha portato alla formazione di piccoli sassolini. Questi ultimi, con il passare del tempo, accrescendosi hanno raggiunto le dimensioni dei ‘goosebumps’ osservati.  

Primi piani di strutture denominate ‘goosebumps’ ottenute dalla narrow-angle camera di OSIRIS. Queste strutture, che coprono distanze superiori ai 100 m, non hanno ancora un’origine nota. Credits: ESA

Per quanto riguarda lo studio della superficie del nucleo cometario un primo risultato sorprendente è stato ottenuto dall’esperimento VIRTIS. Grazie allo spettrometro VIRTIS è stato possibile misurare l’albedo della cometa, ovvero la frazione di luce solare che viene riflessa dal nucleo cometario. Il nucleo della cometa 67P/C-G ha un’albedo pari al 6%, cioè pari alla meta di quella della Luna, ed è pertanto uno degli oggetti più scuri del nostro Sistema Solare. Questo dato cosa ci rivela? Il basso potere riflettente della superficie del nucleo della cometa indica che essa contiene minerali quali ad esempio solfuri di ferro ma anche composti di carbonio.

La bassa albedo è, inoltre, indice di una scarsa quantità di ghiaccio d’acqua sul guscio esterno della cometa, guscio dello spessore di un millimetro. Secondo il team di VIRTIS, questa minor quantità di ghiaccio d’acqua sulla superficie del nucleo cometario è strettamente connessa con la storia geologica della cometa. Poiché quest’ultima passa ripetutamente nella vicinanze del Sole (la cometa 67P/C-G è una cometa a corto periodo orbitale, attualmente il suo periodo orbitale è pari circa a 6,45 anni), con il trascorrere del tempo il ghiaccio superficiale è andato incontro a processi di sublimazione diminuendo di volta in volta.

Tuttavia la superficie della cometa non è completamente priva di ghiaccio ma sono state osservate piccole regioni più luminose. Generalmente queste regioni sono associate a superfici ricche di ghiaccio esposte in seguito al collasso di materiale più debole che ha lasciato scoperto lo strato sottostante. Ad esempio è stata osservata una crepa lunga 500m che si estende tra i due lobi della cometa.

Immagini della grande crepa lunga 500m che si estende tra i lobi e attraversa la regione Hapi e si estende oltre in Anuket. Le immagini sono state ottenuti dalla camera OSIRIS. Credits: ESA

Un altro risultato sorprendente ottenuto dall’esperimento VIRTIS è la scoperta di composti organici macromolecolari su tutta la superficie del nucleo cometario. Questi composti, rivelati grazie ad osservazioni nell’infrarosso, sono simili agli acidi carbossilici (o ai polimeri carbossilici) che compongono gli amminoacidi. Gli amminoacidi, che costituiscono i ‘mattoni della vita’ (essi infatti formano le proteine che compongono il nostro organismo), erano già stati osservati in meteore e meteoriti ma questa è la prima volta che vengono osservati direttamente su un nucleo cometario!

Analizzando la distribuzione di tali composti organici è stato inoltre possibile dedurre che essi erano presenti in quantità abbondanti nel materiale che forma il nucleo della cometa. Questi composti per avere origine necessitano di metanolo, metano o monossido di carbonio che congelano a temperature piuttosto basse. Ciò indica, come spiega Fabrizio Capaccioni (PI, Principal Investigator, dell’esperimento VIRTIS), che questi composti hanno probabilmente avuto origine a grandi distanze dal nostro Sole, durante le prime fasi di formazione del Sistema Solare. La cometa 67P/C-G contiene quindi al suo interno tracce di composti organici che risalgono al periodo di formazione del nostro Sistema Solare o forse ad ancora prima!  

In alto a sinistra, un’immagine del nucleo della cometa 67 P/C-G ottenuta dalla fotocamera di navigazione (NAVCAM) di Rosetta. Nell’altra immagine, una mappa della pendenza spettrale della superficie del nucleo cometario. La pendenza spettrale è un parametro che viene utilizzato per ottenere informazioni sul materiale che compone la superficie della cometa. Il blu indica una bassa pendenza spettrale e predomina nella regione del ‘collo’ della cometa. Tale regione ha al momento mostrato una maggiore attività cometaria e quindi una maggiore emissione di gas e polveri. Credit: ESA / Rosetta / NAVCAM (a sinistra); ESA / Rosetta / VIRTIS / INAF-IAPS / OBS DE PARIS-LESIA / DLR (a destra e in basso)

Gli strumenti di Rosetta osservano inoltre lo sviluppo dell’attività cometaria al diminuire della distanza della cometa 67P/C-G dal Sole. In particolare si intende studiare la variazione nella quantità e composizione del gas e della polvere emessa dal nucleo cometario all’avvicinarsi di quest’ultimo al Sole. Attualmente la sonda Rosetta si trova alla distanza di circa 367000000 km dal Sole e 51200000 km dalla Terra. E’ possibile seguire giorno per giorno la sonda Rosetta a questo link.

Nel corso di questi ultimi mesi le misurazioni effettuate grazie allo strumento MIRO hanno mostrato un aumento del tasso di produzione globale di vapore acqueo della cometa. Dai primi di Giugno alla fine di Agosto 2014 tale tasso è passato da 0,3 a 1,2 litri al secondo. MIRO ha anche scoperto che una porzione sostanziale d’acqua proviene dal collo della cometa. Inoltre l’acqua è accompagnata da altre specie di gas quali monossido di carbonio e biossido di carbonio. Guardando le comete attraverso i telescopi la chioma della cometa è sempre apparsa come una struttura abbastanza uniforme che non subisce variazioni nel giro di poche ore o giorni. Grazie allo strumento ROSINA è stato possibile notare, con grande sorpresa, che la cometa 67P/C-G presenta una chioma che non solo non è distribuita uniformemente nell’intorno del nucleo cometario, ma anche che subisce grandi fluttuazioni nella composizione in brevi intervalli di tempo. Lo spettrometro ROSINA ha rivelato un’alternanza tra picchi di emissione d’acqua e picchi di emissione di anidride carbonica in poche ore. Questa variazione può essere associata a effetti stagionali probabilmente connessi a variazioni nella temperatura appena sotto la superficie del nucleo cometario. I dati mostrano che complessivamente domina l’emissione d’acqua ma ci sono periodi in cui l’emissione di CO e CO2 predomina su quella di H2O. Ci hanno insegnato che le comete sono costituite prevalentemente da ghiaccio ma i dati provenienti dalla cometa 67P/C-G ci stupiscono ancora una volta: questa cometa sembra contenere grandi quantità di anidride carbonica.

Immagine che mostra la composizione eterogenea della chioma della cometa 67P/C-G. La regione rossa è dominata da CO e CO2 e corrisponde ad una zona della cometa che attualmente riceve poca luce dal Sole. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/ IDA.

Unendo le misurazioni ottenute grazie agli strumenti MIRO, ROSINA e GIADA, tra Luglio e Settembre 2014, gli scienziati del team di Rosetta hanno ricavato una prima stima del rapporto tra polvere e gas emessi dalla cometa ottenendo che quest’ultima sembra emettere una quantità di polvere 4 volte superiore a quella del gas. Tuttavia ci si aspetta che questo valore vari con il diminuire della distanza della cometa dal Sole. Quest’ultima scaldandosi ulteriormente potrebbe aumentare la quantità di ghiacci espulsi rispetto a quella della polvere.

GIADA ha inoltre studiato il movimento dei grani di polvere attorno alla cometa. Unendo i dati ottenuti da GIADA con le immagini di OSIRIS è stato possibile individuare due differenti popolazioni di polveri di grani: una uscente e diretta nella direzione dell’orbiter; l’altra orbitante attorno alla cometa alla distanza di 130 km da Rosetta. Si pensa che anche questa situazione cambierà con l’avvicinarsi della cometa alla nostra stella. La chioma di gas e polvere continuerà a crescere e aumenteranno le interazioni con le particelle cariche del vento solare e con la luce ultravioletta del Sole. Tali interazioni porteranno allo sviluppo di una ionosfera della cometa e alla fine di una magnetosfera secondo il meccanismo descritto di seguito. Gli strumenti RPC studiano l’evoluzione graduale di questi fattori nelle vicinanze della cometa. E’ stato già possibile fare importanti osservazioni. E’ stato osservato che l’atmosfera della cometa interagisce con il vento solare in questa prima fase più di quanto si era pensato. Man mano che la cometa si avvicinerà al Sole si avrà lo sviluppo di una magnetosfera ben consolidata in grado di creare quindi un ‘bow shock’, ovvero un’onda d’urto a forma di arco, che blocca il vento solare.    

L’immagine mostra il meccanismo di formazione della magnetosfera.  In  figura 1 viene mostrata la cometa in avvicinamento al Sole, questo avvicinamento provoca (come si può notare in figura 2) la sublimazione delle molecole d’acqua del nucleo cometario. Tali molecole interagiscono con la luce ultravioletta del Sole e vengono ionizzate (figura 3). Gli ioni appena formatisi vengono accelerati dal campo elettrico del vento solare e vengono rivelati dalla strumento RPC-ICA (figura 4). Il vento solare accelera gli ioni d’acqua in una direzione ma viene esso stesso deviato nella direzione opposta (figura 5). Questo effetto si accentuerà con l’avvicinarsi della cometa al Sole fino a portare alla formazione di una magnetosfera in grado di proteggere la cometa dall’interazione diretta con il Sole (figura 6). Credits: ESA/Rosetta/RPC-ICA.

Gli esperimenti a bordo di Rosetta hanno rivelato che la cometa 67P/C-G presenta diverse caratteristiche superficiali e molti processi che contribuiscono alla sua attività. Sono già stati raggiunti importanti risultati nello studio di questa cometa ma c’è ancora molto altro da scoprire. Sappiamo ad esempio che la cometa è composta da due lobi, lobi che stando alle prime misurazioni sembrano essere molto simili per composizione. Ciò favorisce l’ipotesi secondo cui la cometa ha avuto origine dall’erosione di un corpo più grande. Tuttavia non si può ancora escludere la seconda ipotesi, ovvero quella secondo la quale la cometa si è formata dalla fusione di due comete che hanno avuto origine nella stessa zona del Sistema Solare. Solo il tempo e i nuovi dati che saranno ottenuti dagli strumenti a bordo di Rosetta potranno svelarci il mistero e aiutarci a comprendere molto altro ancora su questi straordinari oggetti del Sistema Solare.  

Riepilogo delle proprietà della cometa 67P/C-G ottenute grazie agli esperimenti dell’orbiter Rosetta. Immagine rilasciata dall’ESA il 22 Gennaio 2015. I dati mostrati in figura sono descritti in dettaglio negli articoli pubblicati sulla rivista Science 23 January 2015, vol 347, issue 6220 .


        

Un’italiana nello Spazio – Margherita Maglie

“In un giorno come questo (beh, ci sarà un altro giorno come questo?) sento che la cosa più importante da dire è ringraziarvi: ho avuto molte occasioni di ringraziare pubblicamente le organizzazioni che hanno reso possibile questo volo spaziale per me. Ma ora vorrei fare dei ringraziamenti più personali alla mia famiglia, ai miei amici, ai miei insegnanti, a tutte le numerose persone che mi hanno aiutata ad arrivare a questo giorno, sostenendomi o mettendomi alla prova, insegnandomi qualcosa o semplicemente essendo lì per me. Vado nello spazio con tutta me stessa, con tutto quello che sono e di cui ho fatto esperienza, e porto certamente con me ogni persona che ho incontrato.
Grazie a tutti del supporto e dell’entusiasmo, è tempo di andare. Ci sentiamo dallo spazio! #Futura42

Samantha Cristoforetti ha salutato la Terra con questo messaggio ed una playlist di brani musicali, dirigendosi verso l’antica base di lancio kazaka di Bajkonur. Ad attenderla, sei ore di viaggio a bordo di una Soyuz TMA-15M in compagnia dei suoi compagni di missione, l’americano Terry Virts ed il russo Anton Shkaplerov.
Engine turbopumps at flight speed”
First stage engines at maximum thrust”
Fueling tower separate”
LIFT OFF”
Alle ore 22:01 italiane di domenica 23 Novembre 2014, Samantha ha spiccato il volo per prendere parte alle Expeditions 42/43 che la terranno impegnata in orbita per un periodo di circa sei mesi, fino al maggio 2015, in veste di primo ingegnere della missione italiana Futura. Il suo compito comprende il monitoraggio dei sistemi di bordo della Stazione Spaziale Internazionale (ISS), nonché delle operazioni di alcuni veicoli in fase di sgancio (o operatività) dalla grande casa orbitante. Samantha è la 59-esima donna ad andare nello spazio, la prima italiana ed è anche l’unica donna ad aver superato le dure selezioni svolte dall’European Space Agency (ESA) nell’ambito di un programma di potenziamento del corpo degli astronauti europei. Trentasette anni, cinquecento ore di volo a bordo di sei diversi tipi di velivoli militari, cinque lingue (italiano, francese, tedesco, russo e inglese) più una nel cassetto, il cinese, che nella vita non si sa mai. Una laurea in ingegneria aerospaziale, una tesi di master sullo sviluppo di propellenti solidi per lanciatori, ed un paio di titoli all’estero. Una passione coltivata da sempre, da quando da bambina tappezzava la sua stanzetta a Trento di poster spaziali e libri fantascientifici.

Assunta dall’ESA nel 2009, ha completato nel novembre 2010 l’addestramento base degli astronauti e nel 2011 quello relativo all’utilizzo dei sistemi di bordo della ISS, nonché alle famose “passeggiate spaziali”. Nel 2012 poi è stata assegnata dall’Agenzia Spaziale Italiana alla missione Futura, che la vede oggi protagonista.

Sono grata di poter svolgere il lavoro più bello del mondo. Per noi sei, che rappresentiamo la nuova classe di astronauti europei, questo è l’inizio di una nuova vita.”, dice riferendosi anche ai suoi colleghi.

In preparazione al suo viaggio, Samantha ha seguito l’iter classico di addestramento degli astronauti dell’EAC (European Astronauts Corp), presso la sede di Colonia, in Germania: corsi incentrati sull’acquisizione di nozioni mediche ed ingegneristiche, queste ultime relative essenzialmente alla meccanica orbitale, lezioni di sopravvivenza in condizioni critiche e di riparazione dei sistemi in caso di guasti, quali incendi o depressurizzazioni, periodi di isolamento e di forte stress psicologico, allenamento nelle vasche adibite alla simulazione delle attività a gravità zero, svolgimento di operazioni su fedeli riproduzioni di moduli spaziali in dimensioni reali, compresi il veicolo di approvvigionamento ATV e il laboratorio scientifico Columbus.

Tra le mansioni della nostra astronauta rientra infatti anche il monitoraggio delle operazioni di distacco del quinto ed ultimo Automated Transfer Vehicle (ATV) e di quelle di attacco e di gestione dei veicoli Dragon di SpaceX e Cygnus di Orbital Sciences della NASA.

Per quanto riguarda l’ATV, si tratta sostanzialmente di un modulo (pesante fino a 20 tonnellate al momento del lancio) in grado di trasportare verso la ISS 9 tonnellate di carico utile (acqua, aria, cibo, carburante, pezzi di ricambio e attrezzatura scientifica, il tutto sistemato all’interno del cargo in funzione del baricentro dello stesso) e di sistemare l’assetto della struttura orbitante aumentandone l’altitudine in media ogni 15 giorni (si stima che il quantitativo di carburante dedicato a questo tipo di manovre sia anche superiore agli 800 kg); controllato per un periodo di circa sei mesi dall’ATV Control Centre a Tolosa, dopo essere stato riempito per un totale di circa 6 tonnellate con i rifiuti prodotti ed accumulati sulla stazione, viene sganciato e lasciato bruciare sopra l’oceano Pacifico. Il compito di Samantha sarà monitorare i dati relativi al rientro del modulo in atmosfera, registrati dal Reentry Breakup Recorder (REBR), una sorta di scatola nera collocata a bordo dell’ATV, in modo tale da studiare un agevole rientro per la ISS stessa al termine della sua attività. Il sistema REBR registrerà i dati relativi alla temperatura ed alla pressione negli ultimi minuti di vita dell’ATV e sarà poi espulso dal modulo; a questo punto attiverà il trasmettitore di bordo e invierà le informazioni utili per la sua localizzazione ad un satellite.

La curiosità più affascinante rimane certamente il sistema di attracco di questo modulo alla Stazione Spaziale: dopo aver utilizzato un sensore stellare per calcolare l’orientamento della navicella infatti, l’ATV sfrutta i dati provenienti da una coppia di sensori che permettono un aggancio preciso fino al millimetro, mentre le due navicelle si rincorrono alla velocità di 28’000 km/h! Analogamente, il Cygnus, lanciato per mezzo del razzo Antares in data 27 Ottobre, è un veicolo non pilotato, progettato per portare rifornimenti alla ISS in seguito al licenziamento dello Space Shuttle del 2011, anch’esso non in grado di rientrare in atmosfera. Ha rifornito la Stazione Spaziale di circa 1,9 t di rifornimenti di vario genere, fra cui pezzi di ricambio, hardware per esperimenti scientifici e approvvigionamenti per la crew. Al contrario dell’ATV e del Cygnus invece, Dragon , un modulo adibito al trasporto di merci e di un numero fino a sette di persone, è riutilizzabile e, grazie al suo scudo termico, in grado di rientrare sano e salvo a terra da orbite (a detta dell’amministratore delegato della SpaceX, Elon Musk) lunari o addirittura marziane.

Mentre l’ATV richiede per costituzione di attraccare al modulo russo Zayra della Stazione Spaziale, il Dragon, dotato di un cosiddetto sistema di aggancio comune, il DragonEye, consente di agganciare la ISS tramite tutti i suoi moduli pressurizzati non russi, per mezzo dell’ausilio di un braccio robotico.

E’ possibile comunque seguire gli aggiornamenti di Samantha tramite Twitter (@AstroSamantha), o sulla sua pagina Facebook. “Come abitante temporanea di un avamposto umano nello spazio, condividerò la prospettiva orbitale e condurrò virtualmente nello spazio tutti quelli che vorranno prendere parte a questo viaggio”.

Alzando gli occhi al cielo pochi istanti prima del lancio, non ho potuto fare a meno di provare una certa irrazionale meraviglia pensando che sotto quello stesso blu tre persone come noi stessero per intraprendere un viaggio così diverso dal solito. Alle 22:01 tre persone come noi hanno veramente alzato i piedi da terra sotto la spinta di più di 200 tonnellate di RP-1 e ossigeno liquido. Tre persone come noi hanno viaggiato a migliaia di chilometri orari a pochi chilometri dalle nostre teste e continueranno a farlo per i prossimi sei mesi. Tre persone come noi saranno nuove spettatrici di sedici albe e sedici tramonti, ogni giorno. Tre persone come noi avranno il nostro pianeta in versione ogni volta inedita ed esclusiva. Tre persone come noi. “Sii il cambiamento che vuoi vedere nel mondo.” (Gandhi) Che dire allora: Buon viaggio a tutti!

Sulle ali di luce di un’aurora – Anna Galiano

Immaginate di trovarvi per strada di notte e di vedere in cielo delle enormi fiamme di un colore verdastro o rossastro talmente luminose che vi permetterebbero di leggere il vostro libro preferito, immersi in un’atmosfera surreale e romantica. Strano, vero? Forse per noi poveri sfortunati che viviamo in prossimità della fascia equatoriale della Terra, ma non per coloro che si trovano a latitudini maggiori, i quali possono assistere al meraviglioso fenomeno delle aurore. Le aurore si manifestano nelle regioni polari e sono dette perciò “Northern (Southern)Lights”; tipicamente sono visibili in luoghi quali Alaska, Danimarca, Scozia, Groenlandia, Islanda, Finlandia, Norvegia, Russia, mentre le aurore australi sono osservabili in regioni opposte quali Antartide, Sud America, Nuova Zelanda ed Australia. Questi fenomeni sono stati spiegati nell’antichità con racconti mitologici, a volte anche terribili, da parte delle popolazioni nordiche: i Vichinghi sostenevano che quelle luci derivassero dalle abbaglianti armature delle guerriere Valchirie, quando di notte solcavano i cieli scandinavi; gli Inuit, popolo originario della Groenlandia, attribuivano una spiegazione più macabra, ritenendo che le aurore fossero gli spiriti dei bambini che avevano perso la vita in maniera molto violenta oppure che fossero deceduti proprio il giorno del loro compleanno. Oggi sappiamo che le Valchirie e gli spiriti dei bambini in realtà non c’entrano nulla con un fenomeno la cui origine è strettamente e puramente di natura fisica: questi bagliori luminosi si verificano quando le particelle cariche provenienti dal vento solare vengono intrappolate nella magnetosfera terrestre e che in seguito interagiscono con gli atomi che si trovano nella parte superiore della nostra atmosfera.

Procediamo in dettaglio e con ordine: il Sole è una stella composta essenzialmente da Idrogeno (H) ed Elio (He) ed è inoltre dotata di un’atmosfera propria, la cui parte più esterna, la corona, raggiunge una temperatura (cinetica) di circa 2 milioni di gradi centigradi. La corona emette in tutte le direzioni un gas di elettroni liberi e particelle cariche positivamente (ioni) che può essere inteso come un plasma molto caldo. Questo gas viaggia nello spazio interplanetario con una velocità media di 400 Km/s e trasportando una densità di particelle pari a circa 5 ioni per cm3 di volume, raggiunge la Terra sotto forma di vento solare.

La Terra è un pianeta dotato di un campo magnetico di intensità media pari a 0.3 Gauss. La componente principale (circa il 97%) è originata dalla rotazione della Terra attorno al proprio asse che permette alle particelle cariche nello strato di ferro liquido che circonda il nucleo, di generare correnti elettriche e queste, grazie al loro moto, generano il campo nucleare. In più le rocce della crosta terrestre vengono magnetizzate dal campo nucleare e forniscono esse stesse un campo magnetico secondario (seppur in percentuale molto minore) noto come campo crostale.

Le linee di forza del campo magnetico terrestre, che definiscono la magnetosfera, sembrerebbero essere quelle generate da un dipolo magnetico, ossia linee simmetriche rispetto all’asse geomagnetico del campo che decorrono dal polo sud al polo nord. In realtà la forza esercitata dal vento solare sulla magnetosfera provoca una compressione e deformazione tale da determinarne la forma a goccia.

magnetosfera terrestre

Figura 1: Immagine che rappresenta la magnetosfera terrestre nella quale le linee di forza sono deformate dall’azione del vento solare.

La magnetosfera, che è sostanzialmente costituita da particelle cariche, funge da ottimo scudo per la Terra, dato che estendendosi per diversi Km, impedisce alla maggior parte dei raggi cosmici e particelle cariche nocive per la vita umana di raggiungere la superficie terrestre. Questa protezione, però è assente ai poli. Mentre alcune particelle vengono deviate ed allontanate dalla magnetosfera terrestre, altre un po’ più energetiche riescono a penetrarla. Secondo ciò che viene chiamata riconnessione magnetica, le linee di forza di due corpi magnetici, direzionate in senso opposto possono distruggersi e ricombinarsi con altre linee di forza e di conseguenza liberare energia. In questo modo, quando le linee di forza del campo magnetico solare (di intensità pari ad 1 Gauss) interagiscono con quelle della Terra, le particelle cariche provenienti dal Sole riescono ad immettersi nella magnetosfera. Giunte all’interno della magnetosfera, una buona parte delle particelle viene intrappolata in particolari zone dette Fasce di Van Allen: vi è una fascia esterna a 40000 Km di distanza dalla Terra costituita da elettroni, ed una più interna a 6300 Km, ricca di protoni ed elettroni. Che fine hanno fatto le particelle rimanenti? Queste collidono con le particelle della magnetosfera e tramite le collisioni riescono a liberarsi dalla trappola innescata dallo scudo che circonda la Terra, subiscono un’accelerazione da parte del campo magnetico terrestre e raggiungono i poli. Questi, come già accennato, sono gli unici punti della Terra che non sono circondati dalla magnetosfera, pertanto le particelle del vento solare possono interagire con gli atomi che sono presenti nella parte superiore dell’atmosfera terrestre, la cosiddetta ionosfera. Queste interazioni generano un’ulteriore componente del campo magnetico terrestre (campo esterno). La ionosfera è uno strato atmosferico che si estende dagli 85 Km ai 600 Km dal suolo e l’origine del nome proviene proprio dal fatto che gli atomi in questo strato interagiscono con la radiazione solare e vengono ionizzati, perdendo o acquisendo elettroni. Come si nota dall’immagine seguente, la ionosfera appartiene a tre fasce dell’atmosfera, che sono mesosfera, termosfera ed esosfera.

Struttura dell’atmosfera terrestre

Figura 2: Struttura dell’atmosfera terrestre.

Dunque come quelle antiche armate alla ricerca di nuovi territori da conquistare, che dopo aver percorso un lungo tragitto ed aver individuato la fortezza da espugnare, riescono a vincerne le difese ed innescare una battaglia interna, così alcune particelle del vento solare, dopo aver attraversato circa 150 milioni di Km ed essere riuscite a svincolarsi dalla protezione della magnetosfera terrestre, interagiscono e collidono con gli atomi dell’alta atmosfera. Questi ultimi vengono eccitati, quindi raggiungono un livello di energia superiore ma instabile e di conseguenza decadono, ritornando nello stato stabile ed emettendo radiazione elettromagnetica al seguito della transizione avvenuta. Le aurore sono i fotoni di luce emessi dagli atomi diseccitati che giacciono nella ionosfera. Le aurore terrestri si manifestano per qualche ora e possono avere forme, colore ed intensità variabili. Il colore è associato alla presenza di atomi diversi nell’atmosfera; al di sopra dei 100 Km dal suolo vi è principalmente abbondanza di Azoto (che costituisce il 78% dell’atmosfera terrestre) ed Ossigeno (20%). L’Azoto predomina sull’Ossigeno fino a 100 Km, mentre si ha maggior abbondanza di Ossigeno al di sopra dei 200 Km, come si evince dal grafico seguente.

Grafico che descrive la quantità di Ossigeno ed Azoto alle diverse altitudini.

Figura 3: Grafico che descrive la quantità di Ossigeno ed Azoto alle diverse altitudini. Si nota come l’Azoto predomini intorno ai 100 Km, mentre viene sovrastato dalla quantità di Ossigeno oltre i 200 Km.

L’Ossigeno eccitato decade dopo circa 1 secondo ed emette radiazione di colore verde quando si trova ad altitudini inferiori, mentre produce, ad altezze più elevate, luce rossa corrispondente ad una lunghezza d’onda λ pari a 6300 Ǻ (Angstrom). Quest’ultima componente determina la “auroral red line” ed è spesso difficile da individuare per la bassa sensibilità del nostro occhio al colore rosso e per la ridotta presenza di atomi di Ossigeno nell’atmosfera.

L’Azoto, inoltre, decade istantaneamente dallo stato eccitato ed emette radiazione di colore rosso, blu e violetto, le cui lunghezze d’onda sono indicate con gli stessi colori nella Figura 4, che descrive lo spettro di emissione dell’Azoto molecolare.

Spettro di emissione dell’Azoto molecolare

Figura 4: Spettro di emissione dell’Azoto molecolare, in cui sono evidenziate le radiazioni emesse alle diverse lunghezze d’onda corrispondenti al blu, violetto e rosso.

Di conseguenza, l’emissione di luce da parte di Azoto ed Ossigeno e la loro diversa combinazione alle differenti quote, determina la colorazione dell’aurora, complessivamente verdastra ad altitudini più basse e di un tenue colore rossastro alle quote superiori.

In più le molecole di Azoto eccitate possono interagire con l’Ossigeno atomico e determinare un’ulteriore emissione di luce verde (auroral green line), corrispondente alla lunghezza d’onda di 5570 Ǻ e visibile al di sotto dei 100 Km di altitudine.

Le emissioni di luce di cui abbiamo appena accennato, la auroral green line che corrisponde ad una riga di emissione con λ=5570 Ǻ e la auroral red line con λ=6300 Ǻ sono quelle che principalmente dominano le aurore e per questo sono chiamate righe aurorali. Le si può individuare nello spettro di emissione dell’Ossigeno Atomico riportato di seguito.

Emissione di radiazione elettromagnetica dell’Ossigeno

Figura 5: Emissione di radiazione elettromagnetica dell’Ossigeno, tendente al verde quando è ad altitudini superiori ed al rosso quando è presente in altitudini più basse. Inoltre le due frecce indicano le righe aurorali.

Le righe aurorali sono radiazioni emesse al seguito di particolari transizioni che avvengono tra i livelli energetici del’Ossigeno neutro, rispettivamente tra i livelli 1S0 1D2 e 1D23P2. L’apice è dato dall’espressione 2S+1, dove S è il momento totale di spin degli elettroni coinvolti (il valore 1 suggerisce che S è 0, ossia gli elettroni ruotano attorno al proprio asse in sensi opposti e per questo sono detti antiparalleli, il valore 3 suggerisce S pari ad 1, quindi gli elettroni coinvolti hanno spin paralleli). Il pedice invece è definito dal valore J, la somma del momento angolare totale L (il quale descrive la rotazione delle particelle nello spazio) e del momento totale di spin S, individuato come termine di accoppiamento spin-orbita. Le lettere dei livelli S, P e D corrispondono a dei particolari valori del momento angolare totale L pari a 0, 1, 2, che permettono di individuare i diversi livelli energetici che un atomo può raggiungere.

Nei casi in cui le particelle del vento solare sono altamente energetiche si manifestano aurore fortemente intense e brillanti in cui il colore verdastro giace su di un sottile strato rosso.

Aurora dal colore verdastro

Figura 6: Aurora dal colore verdastro, con uno strato rossastro sottostante, indice che tale fenomeno è stato prodotto da particelle cariche fortemente energetiche.

Le Aurore possono essere distinte in diffuse e discrete. Le prime sono debolmente percettibili, anche in una notte buia, mentre le altre sono facilmente visibili all’interno di quelle diffuse, variando da bagliori deboli a quelli così intensi da poter riuscire a leggere un foglio di giornale.

Le emissioni aurorali assumono forme diverse, somigliando a degli archi oppure a delle corone, fino ad apparire come dei drappeggi fissi o “danzanti” nel cielo, richiamando alla mente il movimento di una tenda quando è sfiorata da una mano. Queste “tende” sono composte da raggi paralleli, ciascuno in allineamento con le linee di forza del campo magnetico terrestre, dimostrando che l’aurora è un fenomeno modellato proprio da quest’ultimo. Osservazioni mediante i satelliti hanno in effetti dato prova di come gli elettroni catturati dalla magnetosfera si dirigano verso i poli spiraleggiando attorno alle linee di forza del campo magnetico.

Il mozzafiato gioco di luci e forme che decora i cieli polari ed australi può essere apprezzato totalmente un’ora prima della mezzanotte quando l’osservatore, il polo magnetico ed il Sole sono perfettamente allineati, ossia nel momento in cui scatta la “mezzanotte magnetica”.

Le collisioni che originano le aurore avvengono in zone ovali asimmetriche attorno ai poli, cosiddette “ovali aurorali” e le loro proiezioni sulla terra determinano le “zone aurorali”, regioni dove si ha la massima osservabilità di aurore, localizzate ad una latitudine di 67°N e 67°S e con un’estensione di circa 6 gradi. Gli ovali aurorali possono variare le proprie dimensioni ed estendersi anche fino all’equatore al seguito di un’attività solare fortemente intensa. A tal proposito, si deve considerare che, come si è già osservato, le aurore sono legate al plasma emesso dal Sole e di conseguenza la loro intensità dipende dalla quantità di particelle cariche che lo costituisce, il quale a sua volta è strettamente connesso con la comparsa della macchie solari. Queste ultime sono delle piccole regioni irregolari sulla superficie del Sole, dal colore più scuro rispetto alle zone circostanti perché relativamente più fredde. Si ritiene che queste siano dovute a dei flussi magnetici in salita verso la superficie e il picco massimo di intensità si raggiunge ogni undici anni, determinando il ciclo solare. Durante il picco massimo del ciclo solare o negli anni immediatamente successivi la quantità di materiale espulsa dal Sole è così elevata che si scatenano delle forti tempeste geomagnetiche, allargando l’ovale aurorale fino alle zone temperate. E’ in queste rare occasioni che gli abitanti delle regioni vicine all’equatore possono avere qualche probabilità di assistere al fenomeno delle aurore. Pare che l’ultimo picco massimo sia stato raggiunto nel Febbraio 2012, in cui sono state registrate circa 67 macchie solari; attualmente siamo ancora nella fase attiva del ciclo, con circa 63-65 macchie solari e tutto ciò spiegherebbe la recente comparsa di aurore in una regione insolita della Terra, come quella che ospita il sud della Gran Bretagna.

Grafico che mostra il ciclo solare di durata pari ad 11 anni

Figura 7: Grafico che mostra il ciclo solare di durata pari ad 11 anni. Si nota come negli anni il picco massimo abbia gradualmente ridotto la sua intensità.

Nella notte tra il 27 e il 28 Febbraio scorso le aurore boreali hanno colorato i cieli di Norfolk, Essex, Galles e Scozia, affascinando gli abitanti per un paio d’ore con i loro colori tendenti al rosso, verde e giallo. Gli scienziati che monitorano l’attività solare avevano registrato il 7 Gennaio 2014 un’espulsione di massa solare molto intensa. Di seguito, i ricercatori dello Space Weather Prediction Centre in Boulder (Colorado) avevano predetto un’imminente tempesta solare. L’intensità di luce visibile al seguito di tempeste geomagnetiche viene misurata tramite l’indice KP che può assumere valori compresi tra 0 e 9. In quell’occasione l’indice KP variò dal valore 1 (il quale indica che la luce aurorale si manifesta nel Nord della Scandinavia) al valore 7 suggerendo che le aurore potevano essere avvistate anche nel Sud del Galles e nel Sud dell’Inghilterra. Ci si aspettava dunque di riuscire a vedere le “Northern Lights” in tali zone il 9 Gennaio, ma anche se questo fenomeno si è fatto attendere, il risultato è stato comunque strabiliante.

Aurora boreale nei cieli meridionali della Gran Bretagna.

Figura 8: Aurora boreale nei cieli meridionali della Gran Bretagna.

Aurora boreale nei cieli meridionali della Gran Bretagna.

Figura 8b: Aurora boreale nei cieli meridionali della Gran Bretagna.

Sembra, inoltre, che le aurore non siano dei fenomeni silenziosi: infatti come la precedente armata espugna la fortezza facendo echeggiare le proprie urla, così questi fenomeni generano dei suoni. Alcuni viaggiatori sostengono di aver udito, in concomitanza con la manifestazione aurorale, dei suoni somiglianti a degli applausi o crepitii, deboli e istantanei, giurando che provenissero dalle aurore stesse. Per molto tempo gli scienziati sono stati scettici a tal proposito, sostenendo che lo strato alto dell’atmosfera in cui si formano le aurore è così sottile che non può permettere la propagazione di onde sonore. Ma nel 2012 un gruppo di ricercatori appartenenti alla Aalto University in Finlandia ha pubblicato un articolo nella quale affermava di aver registrato un suono, prodotto a 70 m di altezza dal suolo, simile a degli applausi e in contemporanea con la manifestazione delle aurore. Secondo il parere di questi ricercatori i suoni provengono da particelle del vento solare che sono responsabili delle luci aurorali, proprio come sostenuto dai viaggiatori “fortunati”. Infatti non possiamo aspettarci di sentire un suono paragonabile a quello che fuoriesce dalle casse musicali durante un concerto, ma tutt’altro: udire questi particolari segnali acustici è molto difficile, innanzitutto perché si manifestano durante periodi di massima attività aurorale e in secondo luogo si presentano in notti prive di vento e di qualsiasi altra fonte di rumore. Ascoltare i suoni dell’aurora è un evento così raro che può capitare una sola volta nella vita.

Pare che le aurore più intense fino ad ora registrate siano state quelle avvenute il 28 Agosto e il 2 Settembre del 1859. In particolar modo l’aurora del 2 Settembre si è manifestata a distanza di un giorno dal rilascio di un’enorme quantità di energia (flare solare) da parte del Sole, l’espulsione di massa coronale più intensa mai registrata. Il flare solare ha raggiunto la Terra ed ha prodotto aurore così intense e brillanti da venir ammirate anche negli Stati Uniti, in Europa, in Giappone ed in Australia. Tempeste geomagnetiche talmente forti, oltre a provocare fenomeni così luminosi possono interrompere le comunicazioni radio, ma quella volta due operatori dell’”American Telegraph Line” riuscirono a comunicare tra loro dalle due diverse sedi, Boston e Portland per circa due ore. Ciò può essere spiegato supponendo che le antenne di alcuni telegrafi avessero il giusto orientamento perché il campo elettromagnetico formatosi da quella tempesta inducesse una corrente geomagnetica, permettendo ai due operatori di comunicare a grandi distanze senza alimentatore.

Non cerchiamo, però di essere egocentrici e pensare che noi terrestri siamo gli unici ad ospitare il fenomeno delle aurore: luci aurorali, anche abbastanza spettacolari, sono state osservate su Venere, Marte, Giove, Saturno, Urano e Nettuno.

Venere non è dotato di un campo magnetico nucleare quindi è priva di magnetosfera, pertanto le particelle provenienti dal vento solare impattano contro l’atmosfera venusiana e danno luogo ad aurore che si diffondono su tutto il disco planetario come delle macchie con luminosità e forma diverse, visibili sul lato del pianeta non illuminato dal Sole.

La manifestazione di aurore su Marte è stata una scoperta abbastanza recente: il 14 Agosto 2004 lo strumento SPICAM a bordo della sonda Mars Express dell’ESA (Agenzia Spaziale Europea) ha rivelato un’aurora nell’emisfero sud del pianeta, nella regione denominata “Terra Cimmeria”. L’emissione aurorale presentava un diametro di 30 Km ed un’estensione in altitudine di 8 Km. I ricercatori hanno notato come la regione in cui si è manifestata l’aurora presenti un campo magnetico fortemente localizzato. Così l’origine del fenomeno può essere attribuita ad un flusso di elettroni che muovendosi lungo le linee di forza del campo magnetico crostale generato da rocce magnetizzate (Marte, come Venere non è dotato di un campo magnetico principale nel nucleo) eccitano gli atomi della parte superiore dell’atmosfera marziana.

Il gigante gassoso del nostro Sistema Solare, Giove, dà luogo ad aurore che hanno un’intensità 100 volte maggiori rispetto a quelle terrestri poiché presenta un campo magnetico molto più forte di quello della Terra, pari a 4.3 Gauss. Le aurore su Giove sono state osservate per la prima volta nel 1979, ad opera della missione Voyager 1. L’Hubble Space Telescope (HST) ha catturato un’immagine di un’aurora che, ondeggiando come una tenda, colora il polo nord del pianeta, visibile nella parte ultravioletta (UV) dello spettro elettromagnetico. Si ritiene che le cause di questo fenomeno siano dovute non solo all’interazione del vento solare con l’atmosfera di Giove ma anche, e forse soprattutto, al proprio satellite Io.

 Fenomeno aurorale manifestatosi sul pianeta Giove e ripreso nell’UV.

Figura 9: Fenomeno aurorale manifestatosi sul pianeta Giove e ripreso nell’UV. Credit: John Clarke (University of Michigan) and NASA

Io presenta un’intensa attività vulcanica ed emette nello spazio circostante elementi come Zolfo ed Ossigeno, i quali sfuggono al suo campo gravitazionale, si dispongono in una regione a forma di “ciambella” nella regione circostante il pianeta gigante e interagiscono con il campo magnetico di Giove. In questo modo vengono generate delle aurore visibili nella regione X dello spettro elettromagnetico. Come prova che gli atomi emessi dai vulcani di Io siano in grado di influenzare il fenomeno aurorale che si manifesta su Giove i ricercatori hanno tenuto sotto controllo un particolare elemento prodotto dal satellite, il Sodio. Nel 2007 i dati hanno registrato un aumento di Sodio nella regione che circonda Giove al seguito di un’attività vulcanica di Io particolarmente forte; ma come conseguenza di questa emissione, è stato rilevato un basso segnale radio, indice che sono state prodotte poche aurore sul pianeta gigante. Infatti prima di raggiungere l’atmosfera, le particelle cariche possono emettere onde radio. In conclusione, Io ha un’enorme influenza sulla manifestazione di aurore sul pianeta Giove, ma così come può creare il fenomeno, è anche in grado di ridurlo.

Su Saturno hanno origine spettacolari ed intense aurore che durano per giorni, visibili però, anch’esse, nell’UV. Furono osservate per la prima volta ai poli nel 1979, dalla sonda Pioneer 11 di appartenenza della NASA. Le aurore di Saturno si estendono per diversi Km dai poli e l’emissione di radiazione ultravioletta è dovuta alla presenza di atomi di Idrogeno nell’atmosfera. Le prime immagini che raffiguravano questi fenomeni nelle regioni settentrionali di Saturno sono state ottenute nel 1994/1995 dall’HST, mentre recentemente la sonda Cassini ha fornito una più vasta gamma di manifestazioni aurorali, indagando nelle regioni dello spettro elettromagnetico corrispondenti all’IR (infrarosso), UV e Visibile. Le osservazioni comprendono sia le regioni settentrionali complementari che quelle meridionali e la sonda ha inoltre ripreso le aurore sulla faccia del pianeta non visibile dalla Terra.

 Ovale aurorale al polo di Saturno, visibile nell’UV.

Figura 10: Ovale aurorale al polo di Saturno, visibile nell’UV. Credit NASA

La prima volta che venne osservata un’aurora su Urano fu nel 1986, quando la sonda della NASA Voyager 2 vi orbitò attorno e una recente foto di manifestazioni aurorali è stata ottenuta dall’HST nel 2011. Urano è un pianeta particolare per l’inclinazione del proprio asse di rotazione, quasi giacente sul piano orbitale: ciascuna regione polare è illuminata dal Sole per 40 anni e rimane in ombra per altrettanti anni. Ha inoltre un asse di campo magnetico inclinato di circa 60° rispetto all’asse di rotazione. A causa della particolare inclinazione dell’asse rotazionale l’aurora vista da Voyager 2 è diversa rispetto a quella fotografata dall’HST. Nel 1986 l’asse di rotazione puntava in direzione del Sole (solstizio) e la sonda, orbitandogli attorno, ha potuto notare le aurore formatesi sul lato in ombra del pianeta. Nel 2011, invece, l’asse di rotazione era perpendicolare al Sole (punto equinoziale) e in più la visibilità dell’HST era ridotta poiché questo telescopio spaziale osserva il Sistema Solare rimanendo in orbita attorno alla Terra. HST è riuscito, nonostante tutto, a catturare dei deboli bagliori luminosi (visibili nella seguente Figura 11) della durata di pochi minuti, nella regione destra del pianeta, corrispondente al polo nord magnetico di Urano.

Piccole macchie aurorali fotografate dall’HST nel 2011 in corrispondenza del polo nord magnetico di Urano.

Figura 11: Piccole macchie aurorali fotografate dall’HST nel 2011 in corrispondenza del polo nord magnetico di Urano. Credit NASA and Erich Karkoschka, U. of Arizona

Anche su Nettuno sono state individuate delle aurore, con una potenza pari a 50 milioni di Watt, molto minore rispetto ai 100 miliardi di Watt delle aurore terrestri. Il campo magnetico di Nettuno però è molto complesso e questo dà origine a fenomeni aurorali altrettanto difficili da studiare, dislocati in diverse regioni del pianeta e non solo ai poli.

Infine, varcando i confini del nostro quartiere ed uscendo dal Sistema Solare, ritroviamo nuovamente le aurore che animano le pseudo-stelle di massa molto piccola, minore di 0.08Mּ (Mּ indica la massa solare che equivale a 2×1033g), le “nane brune”. Un gruppo di ricercatori capeggiato da Jonathan Nichols ha dimostrato che l’emissione di onde radio da parte di alcune nane ultrafredde potrebbe essere spiegata tramite fenomeni simili a quelli che originano le aurore. In questo modo si potrebbe riuscire ad individuare pianeti di cui altrimenti non si verrebbe mai a conoscenza. In più tale meccanismo può essere sfruttato per conoscere il campo magnetico di altri pianeti ed avere informazioni sulle interazioni con le loro stelle e i propri satelliti.

Le transizioni che generano le aurore terrestri sono state individuate anche in ammassi di gas rarefatto e pulviscolo cosmico, note come nebulose gassose. Queste si suddividono in: nebulose diffuse (luminose ed oscure), nebulose planetarie e nebulose extragalattiche. Le nebulose planetarie sono il risultato di una stella di massa pari alla massa del nostro Sole, che cessata la reazione nucleare che converte Idrogeno (H) in Elio (He) nel proprio nucleo (core) e quindi uscita dalla fase di sequenza principale, si presenta con un nucleo di He e con l’H nelle regioni circostanti. In più, attorno al nucleo vi è una fascia di He in combustione che avanzando verso l’esterno, libera un’energia tale da far espellere il materiale circostante lasciando a nudo il nucleo di He: in questo modo si forma la nebulosa planetaria. Agli inizi dello scorso secolo erano state individuate, nello spettro delle nebulose, delle righe di emissione insolite, la cui origine era sconosciuta. In un primo momento si ipotizzò l’esistenza di un nuovo elemento, il “Nebulio” che decadendo da livelli energetici di energia superiore emetteva radiazione a lunghezze d’onda anomale, specialmente a λ=4959 Ǻ e a λ=5007 Ǻ. Successivamente si intuì che tali righe venivano emesse da materiali noti che si trovavano però in particolari condizioni ed in effetti ciò venne confermato nel 1928 dal fisico statunitense Ira Bowen. Infatti Bowen analizzò i livelli energetici dell’Ossigeno O++ notando che le due righe spettrali sopra citate corrispondevano alle rispettive transizioni: 1D23P1 e 1D23P2. Un’altra insolita riga veniva generata dalla transizione 1S01D2, la transizione che sulla Terra genera l’auroral green line e per questo nominata, come già detto, “transizione aurorale”. All’interno delle nebulose avvengono anche processi di foto-ionizzazione ossia un fotone interagendo con un atomo od uno ione, lo priva di uno o più elettroni. Questi ultimi sono così energetici che collidendo con l’O++ nella sua configurazione fondamentale, lo eccitano e gli permettono di raggiungere livelli più energetici ed instabilie favorire di conseguenza i decadimenti sopra descritti. Si può stimare il rapporto tra l’energia emessa durante la transizione aurorale (1S→1D) e quella emessa durante la transizione nebulare (1D→3P) e in questo modo i ricercatori potrebbero riuscire a conoscere la temperatura degli elettroni coinvolti nel processo e la loro densità. In questo modo si possono comprendere meglio le modalità in cui si verificano questi processi proibiti, la cui esistenza viola una delle regole che permettono la transizione tra livelli energetici. Il motivo sostanziale del perché queste transizioni si notano nelle nebulose risiede nelle grandi dimensioni dell’oggetto considerato, il quale possiede un’elevata densità di particelle che possono dar luogo ad un gran numero di collisioni. Da questi rapporti di energia si può tra l’altro venire a conoscenza della sezione d’urto delle collisioni tra elettroni ed atomi, ossia determinare la probabile area attorno all’atomo nella quale avviene la collisione ad opera dell’elettrone.

Le aurore sono dei fenomeni che suscitano sorpresa e stupore ma i meccanismi che sono alla base della loro origine sono un importante oggetto di studio. Ammirandole e studiandole, possiamo permettere al nostro occhio di contemplarne la bellezza e fornire alla nostra mente i mezzi per comprendere fenomeni che avvengono in tutto l’Universo.

aurora1

Credit: Simone Renoldi

aurora2

Credit: Simone Renoldi

aurora5

Credit: Simone Renoldi

aurora4

Credit: Simone Renoldi
Come fotografare l’aurora boreale:
http://www.phototutorial.net/2013/10/28/fotografare-aurora-boreale/

BLUE AURORAS

BLUE AURORAS: Northern Lights are usually green, and sometimes red. Those are the colors produced by oxygen when it is excited by electrons raining down from space. On Feb. 22nd, Micha Bäuml of Straumfjord, Norway, witnessed an appariton of aurora-blue
“All of a sudden the sky exploded,” says Micha. “The aurora looked like a giant flame.”
In auroras, blue is a sign of nitrogen. Energetic particles striking ionized molecular nitrogen (N2+) at very high altitudes produces a cold azure glow of the type captured in Micha’s photo. Why it overwhelmed the usual hues of oxygen on Feb 22nd is unknown. Auroras still have the capacity to surprise.

 Anna Galiano – 2014

Non solo Barocco – Livio Ruggiero

copertina-livio

Ai giovani salentini,

nella speranza che sappiano valorizzare

il ricco patrimonio culturale della loro terra

e alla memoria di mia moglie Roberta,

che ha condiviso questa speranza

e operato con passione

perché diventasse realtà.

__________________________________________________________

Prefazione

Nel 1967 fui invitato dal mio professore di Fisica teorica, Niccolò Dallaporta, a trasferirmi da Padova a Lecce per partecipare alla grande avventura della fondazione della Facoltà di Scienze Matematiche Fisiche e Naturali di quella Università, che era appena passata dallo status di Università privata, voluta dal Consorzio Ionico-Salentino, a quello di Università Statale.

Avevo messo su famiglia da pochi mesi, ma dopo una rapida consultazione con mia moglie, che si era appena trasferita a Padova col suo pianoforte a un quarto di coda dal nostro comune paese natale, Velletri nei Colli Albani, accettai con entusiasmo la proposta e a settembre del 1968 emigrammo a Lecce, con “armi e bagagli” compreso il succitato pianoforte, incuranti del coro di proteste dei numerosi amici veneti che ci rimproveravano di fare questo salto nel buio nel “profondo Sud”.

Appena arrivati ci demmo subito da fare per vedere un po’ dove eravamo finiti.

Lecce e il Salento ci apparvero subito come una vecchia signora, di chiare origini nobili, adagiata in un paesaggio stupendo, ma con i suoi sontuosi abiti di merletto un po’ rosicchiati dai topi e ricoperti di ragnatele.

Il girovagare nel centro storico della città ci fece scoprire tutta la magnificenza, anche se un po’ polverosa e abbandonata, del barocco, ma un giorno in una viuzza ci imbattemmo in una lapide, posta troppo in alto per essere vista facilmente e troppo oscurata dal tempo per essere letta chiaramente, che ci aprì un orizzonte impensabile, alternativo a quanto avevamo visto fino ad allora, quello del patrimonio scientifico di questa estrema parte orientale d’Italia.

Anche se di questo orizzonte si sono potute rilevare solo alcune evidenze, per altro notevoli, degli ultimi tre secoli, non è azzardato pensare che esso si estenda su un arco di tempo più ampio, che ha per estremi due matematici: Archita da Taranto, nel IV secolo avanti Cristo, considerato uno dei grandi matematici dell’antichità, ed Ennio De Giorgi, nel XX secolo, senz’altro uno dei più grandi matematici del Novecento.

E’ per me emozionante ricordare che il Comitato Tecnico ordinatore della Facoltà di Scienze, che ci propose il trasferimento, era composto proprio da Ennio De Giorgi, che insegnava a Pisa, da Niccolò Dallaporta, mio professore all’Università di Padova, e da Alberto Bonetti, dell’Università di Firenze.

La ricerca e la documentazione sul patrimonio scientifico salentino divenne subito per me uno dei passatempi preferiti, cui dedicare parte del tempo, poco in verità, lasciato libero dalle incombenze accademiche e familiari.

I risultati della ricerca divennero presto oggetto di brevi articoli sulla stampa locale e di conferenze presso scuole e circoli culturali, in cui cercavo di far apprezzare ai miei nuovi concittadini i tesori di un’eredità culturale sconosciuta ai più, non in contrapposizione ma ad arricchimento e completamento di un patrimonio che appariva sempre più non costituito di soli tesori artistici, architettonici e letterari, nella profonda convinzione che la Cultura è una e che la sua separazione in cultura umanistica e cultura scientifica risulta in un inevitabile suo impoverimento.

L’idea di questo libro è nata durante uno di questi incontri, avvenuto significativamente in uno di quelli che si potrebbero definire i templi dell’Umanesimo salentino, il Centro Studi  “G. Comi” a Lucugnano.

E’ stato proprio al termine della mia conferenza su “Scienziati e sapere scientifico nel Salento dall’Ottocento al Novecento”, che i non numerosi ma qualificati ascoltatori presenti, quasi tutti “umanisti”, mi suggerirono di raccogliere in un libretto le “spigolature” che avevo loro illustrato, per fornire, soprattutto ai giovani, l’opportunità di scoprire anch’essi, quello che loro avevano scoperto e che tanto li aveva sorpresi ed entusiasmati.

E’ motivo di comprensibile orgoglio e soddisfazione che il risultato più importante di questo “bighellonare” tra le dimenticate emergenze del patrimonio scientifico salentino, sia stato quello di contribuire alla realizzazione del progetto di “Censimento e catalogazione delle collezioni scientifiche in Provincia di Lecce”, nell’ambito del grande Progetto Finalizzato “Beni Culturali” del Consiglio Nazionale delle Ricerche.

Il progetto, durato cinque anni, ha permesso di scoprire l’esistenza nelle scuole della Provincia di centinaia di apparecchi scientifici e di migliaia di preparati naturalistici, che costituiscono un tesoro di notevole importanza per la museologia scientifica e per la realizzazione di efficaci forme di didattica delle scienze che tengano conto del loro sviluppo storico.

Nel trattare i vari argomenti ho fatto ampio uso dell’inserimento di parti anche di una certa lunghezza dei testi citati, perché i volumi da cui sono tratti sono spesso difficilmente consultabili o perché piuttosto antichi o perché appartenenti all’editoria locale, con edizioni non sempre destinate alla vendita e spesso in numero di copie così limitato da esaurirsi con la distribuzione delle copie omaggio nel corso della presentazione al pubblico, con la conseguenza che spesso queste opere sono assenti anche presso le biblioteche pubbliche.

Naturalmente in tutti questi anni, oltre all’appassionato sostegno di mia moglie, che, docente di Educazione musicale, svolgeva analogo lavoro nel campo delle tradizioni popolari, e all’inconsapevole pazienza dei nostri tre figli, Emanuele Antonio e Francesco, nati a Lecce, cui certamente sottraevo una parte del tempo da dedicare loro, ho potuto godere dell’aiuto di tante persone, amici e colleghi o dirigenti e impiegati di scuole e biblioteche, che mi hanno fornito notizie e indicazioni o mi hanno facilitato la consultazione di libri e documenti. A loro, troppo numerosi per tentare di ricordarli tutti senza dimenticarne qualcuno, va il mio ringraziamento più sentito.

Debbo però ringraziare in modo particolare l’amico Ennio De Simone e mio figlio Antonio per la pazienza con cui hanno letto il manoscritto, suggerendomi correzioni e integrazioni, ma soprattutto per avermi spronato alla sua pubblicazione, né posso esimermi dal ringraziare l’Editore per la stima che mi ha sempre dimostrato.

Estratto:

A Lecce la prima lotta all’inquinamento elettromagnetico.

L’8 aprile 1868 il Sindaco Michele Lupinacci comunica al Candido che il Consiglio Municipale ha accettato la sua proposta per la rete di quattro orologi sincronizzati elettricamente. L’orologio motore e uno dei quadranti sarebbe stato collocato sul Sedile e altri tre quadranti sarebbero stati installati sul Liceo Palmieri, sulla Prefettura e sull’Ospedale dello Spirito Santo.

Si avviano quindi i lavori per l’orologio e il regolatore da sistemarsi sul Sedile e si presenta subito il problema dello stendimento dei fili elettrici per il collegamento con gli edifici su cui è prevista la collocazione degli altri tre quadranti. Infatti alcuni proprietari degli stabili interessati si rifiutano di far collocare le mensole per il sostegno dei fili.

Su incarico del Sindaco il Candido sottopone il problema al Prefetto, che, a sua volta, richiede il parere del Ministero dell’Interno e di quello dei Lavori Pubblici.

Il risultato di questa consultazione è che l’installazione degli orologi va considerata un’operazione di pubblica utilità e pertanto si può applicare la normativa già esistente per l’installazione dei telegrafi elettrici e dei lampioni dell’illuminazione pubblica, secondo cui i proprietari degli edifici interessati devono consentire l’installazione delle mensole che dovranno reggere i fili elettrici.

Ma se alcuni dei cittadini interessati danno di buon grado l’autorizzazione all’installazione delle mensole, come la Signora Felicita Gentile ved. Carrozzini, uno di essi si oppone tenacemente adducendo a motivo del suo rifiuto il possibile pericolo per la salute causato dal magnetismo indotto dalla corrente elettrica.

Quel cittadino non è una persona qualunque, ma il chimico Pasquale Greco, che è stato uno dei rappresentanti di Lecce alla VII Riunione degli Scienziati svoltasi nel 1845 a Napoli.

Ecco come risponde al Sindaco il 29 dicembre del 1869:

“… conoscendo purtroppo la forza elettro-magnetica, e la conducibilità de’ metalli in genere, non che l’affinità cui esercita l’elettrico del filo conduttore con quello dell’ambiente atmosferico, e quali danni possa accagionare agli edifizi, ne’ quali viene infisso; il sottoscritto si duole di non poter satisfare ai di Lei desideri d’apporsi al prospetto del suo palazzo i fili conduttori per l’orologio del Liceo…”.

E alla risposta del Sindaco così replica:

“Epperò è mio scopo soltanto, come con altra mia significai a V. S. di guarentire la salute di mia Famiglia, la quale paventa al solo nome di elettricità.”

Evidentemente la novità del progetto trova non preparate le autorità nei confronti di questo rifiuto, ma per non ritardarne lo sviluppo si decide di collocare provvisoriamente davanti alla casa del Greco un palo per sostenere i fili che per collegare il Sedile al quadrante posto sul Liceo Palmieri.

Dopo due anni, però, il problema non è stato ancora risolto e l’ 8 gennaio 1872 il Prefetto scrive alla Deputazione Provinciale chiedendo di togliere il palo, che crea notevole disagio alla circolazione e di installare la mensola nel muro dell’edificio del Greco, facendo notare che:

“…  non pare che ora debba  più tollerarsi, che per difetto dell’assenso di un solo che unico rimane restio, si debba vedere in perpetuo una deformità nazionale a danno della comodità dei cittadini ed a privilegiato riguardo di un solo”.

Nella sorprendente storia del rapporto di Lecce con l’elettricità, il rifiuto di Pasquale Greco può essere quindi considerato l’inizio di quella lotta all’inquinamento elettromagnetico esplosa in anni recenti, che costituirebbe quindi un altro primato di Lecce.

INDICE-LIVIO

INDICE-LIVIO2

Postfazione

Sono passati quarantacinque anni dal quel fatidico 1967 in cui fu posta la prima pietra della Facoltà di Scienze Matematiche Fisiche e Naturali dell’Università di Lecce. Molto cammino è stato fatto da allora.

Dalle prime ricerche in fisica teorica e in matematica, cui si aggiunsero da subito i primi timidi esperimenti in fisica dei materiali, si passò allo studio delle applicazioni dei fasci di elettroni e dell’energia solare, organizzando nel 1978 a Castro la prima scuola estiva italiana sulle celle solari. Nel 1979 si aprì il campo di ricerche in biologia, con particolare attenzione alla biologia marina, e nel 1985 la sonda Giotto, che andò all’appuntamento con la cometa di Halley, portava un analizzatore di polvere costruito in collaborazione tra le Università di Lecce e di Bari.

Alla facoltà di Scienze si sono aggiunti la Facoltà di Ingegneria e alcuni istituti del Consiglio Nazionale delle Ricerche. Sono state organizzate decine di scuole estive e di convegni, che hanno fatto conoscere il Salento a centinaia di ricercatori italiani e stranieri.

Come messo in evidenza nel volume Per una storia della scienza e tecnologia nel Salento dall’Unità d’Italia ad oggi, recentemente pubblicato, il dinamico sviluppo dell’attività di ricerca ha oggi collocato il Salento nel panorama scientifico nazionale e internazionale in numerosi settori: dalla fisica teorica alla matematica, dalla biologia marina alla geofisica, dalla zoologia alla botanica, dalla fisica dell’atmosfera all’informatica, dall’energetica all’ingegneria dei materiali, dalle biotecnologie alle nanotecnologie, dall’ecologia alla fisiologia, dall’astronomia alla fisica cosmica, dalla chimica alla conservazione delle opere monumentali.

E’ stato ricostituito l’Orto Botanico ed è stato realizzato il Museo dell’Ambiente, che insieme al Museo di Biologia Marina “Pietro Parenzan” a Porto Cesareo e all’Osservatorio su Ecologia e Salute degli Ecosistemi Mediterranei a Otranto, costituiscono un efficace centro di riferimento per la formazione e l’educazione ambientali per tutta la collettività.

E non va dimenticato il notevole contributo dato allo sviluppo della didattica: molti degli insegnanti di discipline scientifiche nelle scuole salentine e di altre regioni si sono formati a Lecce.

Nel frattempo la Vecchia Signora si è rimessa in ghingheri. Ha scosso via dai suoi abiti la polvere e le ragnatele e ha ridato amido ai merletti, presentandosi nel pieno della sua nobiltà ai visitatori che, ogni anno più numerosi, vengono a trovarla da ogni parte del mondo.

Il futuro anche scientifico di questa parte d’Italia è molto promettente, nonostante le nubi di origine politica ed economica che sembrano addensarsi inesorabilmente sul mondo della scuola e della ricerca, ma sarebbe un grave errore trascurare il Barocco!

Livio Ruggiero – 2014